• Title/Summary/Keyword: Antireflection Coating(ARC)

Search Result 12, Processing Time 0.019 seconds

Selective Emitter Effect of porous silicon AR Coatings formed on single crystalline silicon solar cells (단결정 실리콘 태양전지에 형성한 다공성실리콘 반사방지막의 선택적 에미터 특성 연구)

  • Lee, Hyun-Woo;Kim, Do-Wan;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.116-117
    • /
    • 2006
  • We investigated selective emitter effect of Porous Silicon (PSI) as antireflection coatings (ARC). The thin PSi layer, less than 100nm, was electrochemically formed by electrochemical method in about $3{\mu}m$ thick $n^+$ emitter on single crystalline silicon wafer (sc-Si). The appropriate PSi formations for selective emitter effect were carried out a two steps. A first set of samples allowed to be etched after metal-contact processing and a second one to evaporate Ag front-side metallization on PSi layer, by evaluating the I-V features The PSi has reflectance less than 20% in wavelength for 450-1000nm and porosity is about 60%. The cell made after front-contact has improved cell efficiency of about in comparison with the one made after PSi. The observed increase of efficiency for samples with PSi coating could be explained not only by the reduction of the reflection loss and surface recombination but also by the increased short-circuit current (Isc) within selective emitter. The assumption was confirmed by numerical modeling. The obtained results point out that it would be possible to prepare a solar cell over 15% efficiency by the proposed simple technology.

  • PDF

Recovery of Silicon Wafers from the Waste Solar Cells by H3PO4-NH4HF2-Chelating Agent Mixed Solution (인산-산성불화암모늄-킬레이트제 혼합용액에 의한 폐태양전지로부터 실리콘웨이퍼의 회수)

  • Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.666-670
    • /
    • 2013
  • Recovery method of silicon wafer from defective products generated from manufacturing process of silicon solar cells was studied. The removal effect of the N layer and antireflection coating (ARC) of the waste solar cell were investigated at room temperature ($25^{\circ}C$) by variation of concentration of $H_3PO_4$, $NH_4HF_2$, and concentration and types of chelating agent. Removal efficiency was the best in the conditions; 10 wt% $H_3PO_4$ 2.0 wt% $NH_4HF_2$, 1.5 wt% Hydantoin. Increasing the concentration of $H_3PO_4$, the surface contamination degree was increased and the thickness of the silicon wafe became thicker than the thickness before surface treatment because of re-adsorption on the silicon wafer surface by electrostatic attraction of the fine particles changed to (+). The etching method by mixed solution of $H_3PO_4$-$NH_4HF_2$-chelating agents was expected to be great as an alternative to conventional RCA cleaning methods and as the recycle method of waste solar cells, because all processes are performed at room temperature, the process is simple, and less wastewater, the removal efficiency of the surface of the solar cell was excellent.