• Title/Summary/Keyword: Antioxidant peptides

Search Result 87, Processing Time 0.028 seconds

Antioxidant Activity of Low Molecular Peptides Derived from Milk Protein (유단백질 가수분해에 의해 생성된 저분자 Peptides의 항산화 활성)

  • Woo, Sung-Ho;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.633-639
    • /
    • 2009
  • The principal objective of the current study was to prepare low molecular weight peptides from milk proteins using enzymatic hydrolysis techniques, in an effort to assess the antioxidant activity of these peptides. The casein and whey proteins isolated from fresh milk were treated with several proteolytic enzymes, such as chymotrypsin, pepsin, and trypsin and the resulting low molecular weight peptides were collected by TCA precipitation. Their identity was confirmed by SDS-PAGE analysis. The hydrolysis experiments indicated that whey protein treated with chymotrypsin displayed the highest degree of protein hydrolysis. The antioxidant activity of milk protein hydrolysates was determined by measuring the ABTS-radical scavenging activity. The results of these experiments showed that hydrolysis of the milk protein was effective in increasing their antioxidant activities. Especially, the tryptic digested casein displayed the highest radical scavenging activity (80.7%). The hydrolyzed low molecular weight milk protein was isolated using an ultrafiltration membrane. The casein hydrolysate passed through a membrane with molecular weight cut-off (MWCO) of 3 kDa displayed the strongest antioxidant activity.

Purification and Characterization of Thiol-Specific Antioxidant Protein from Human Liver: A Mer5-Like Human Isoenzyme

  • Cha, Mee-Kyung;Kim, Il-Han
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.236-240
    • /
    • 1996
  • A 23-kDa molecular mass of antioxidant protein was purified from human liver. This protein exhibited the preventive effect against the inactivation of glutamine synthetase by a metal-catalyzed oxidation system. This antioxidant activity was supported by a thiol-reducing equivalent such as dithiothreitol in a similar manner to that of the 25-kDa thiol-specific antioxidant protein (TSA) from human red blood cells (HR). However, a thioredoxin-linked peroxidase activity of thiol-specific antioxidant protein of human liver (HLTSA) (0.91 ${\mu}mol/min/nmol$ of HLTSA) was much lower than that of thiol-specific antioxidant protein of human red blood cells (HRTSA) (16.4 ${\mu}mol/min/nmol$ of HRTSA). This HLTSA is also immnologically distinct from HRTSA Amino acid sequences of the three tryptic peptides (P1, P2, P3) of HLTSA were found to be completely homologous to segments of the known Mer5-like protein, which belongs to the known TSA family.

  • PDF

Antioxidant Properties of Peptides Extracted from Tenebrio molitor Larvae (갈색거저리 유충에서 추출한 펩타이드의 항산화 특성)

  • Sam Woong Kim;Sang Wan Gal;Won-Jae Chi;Woo Young Bang;So Jeong Park;Tae Wan Kim;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.383-390
    • /
    • 2023
  • The goal of this study was to identify new bioactive peptides in extracts derived from Tenebrio molitor (T. molitor) larvae for the development of functional foods. After extraction from freeze-dried T. molitor larvae with various solvents on time course, the extracts showed the highest 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity at 5 and 10 hr per total protein and solid contents, respectively. When the water extract was fractionated, a high methanol concentration led to a reduced level of high-molecular-weight proteins in the centrifugal supernatant, whereas increased DPPH activity in the supernatants suggests low-molecular-weight peptides may mediate antioxidant activity in the supernatant. Most of the organic solvent partitions, excluding butanol, showed similar activities in the water phases, and the organic solvent partition fraction exhibited a 28~44% decrease in activity following heat treatment, implying that some components in the fraction become unstable in the presence of heat. The addition of proteinase K to the water extract increased DPPH activity by 10~20%, suggesting that peptides, when released from total proteins, partially increase antioxidant activity. Therefore, we suggest that the antioxidants in T. molitor larval extracts make them a potential source of functional animal food.

A novel tetrapeptide for the treatment of hair loss identified in ginseng berry: in silico characterization and molecular docking with TGF-β2

  • Sung-Gyu Lee;Sang Moon Kang;Hyun Kang
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.316-324
    • /
    • 2022
  • Hair loss causes psychological stress due to its effect on appearance. Therefore, the global market for hair loss treatment products is rapidly growing. The present study demonstrated that ginseng berry-derived and sequence-modified peptides promoted the proliferation rate of dermal papilla (DP) cells and keratinocytes, in addition to having antioxidant properties. Moreover, the potential role of these ginseng berry peptides as TGF-β2 antagonists was confirmed through in silico computer docking. In addition to promoting the growth of ,the ginseng berry-derived peptides also promoted the proliferation of keratinocytes experimental Particularly, an unmodified ginseng berry-derived peptide (GB-1) and two peptides with sequence modifications (GB-2 and GB-3) decreased ROS generation and exhibited a protective effect on damaged HaCaT keratinocytes. Computer-aided peptide discovery was conducted to identify the potential interactions of important proteins with transforming growth factor-beta 2 (TGF-β2), a key protein that plays a crucial role in the human hair growth cycle. Our results demonstrated that MAGH, an amino acid sequence present in herbal supplements and plant-based natural compounds, can inhibit TGF-β2.

Peptides-derived from Scales of Branchiostegus japonicus Inhibit Ultraviolet B-induced Oxidative Damage and Photo-aging in Skin Cells (피부세포에서 옥돔 비늘로부터 추출한 펩타이드의 UVB에 대한 산화적 손상 및 광 노화 억제)

  • Oh, Min Chang;Kim, Ki Cheon;Ko, Chang-ik;Ahn, Yong Seok;Hyun, Jin Won
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.269-275
    • /
    • 2015
  • Collagen peptides, which are found at high concentrations in the human body, are present in animal bones and the skin of marine organisms, namely, fish scales. Collagen is the most abundant structural protein of various connective tissues in animals. Furthermore, it is widely used in biomedical material, pharmaceutical, cosmetic, food, and leather industries. Peptides extracted from scales of various fish protect against ultraviolet B (UVB)-induced skin damage and photo-aging. However, the protective effects of collagen peptides derived from the scales of Branchiostegus japonicus against UVB exposure are unclear. This study investigated the effects of peptides larger than 1 kDa (high-molecular weight peptides [HMP]) and smaller than 1 kDa (low-molecular weight peptides [LMP]), derived from extracts of B. japonicus scales, against UVB-induced skin damage and photo-aging. These peptides scavenged 1,1-diphenyl-2-picrylhydrazyl radicals in a dose-dependent manner. In UVB-exposed HaCaT human keratinocytes, LMP inhibited 8-isoprostane generation, a marker of cellular lipid peroxidation. The peptides also suppressed the UVB-induced increase in tyrosinase activity and melanin content in B16F10 mouse melanoma cells. In addition, the LMP and HMP treatment suppressed UVB-induced elastase and matrix metalloproteinase-1 activities in the HaCaT cells. These results indicate that peptides derived from B. japonicus scales have antioxidant, antiphoto-aging, and skin-whitening effects.

Antioxidant and Blood-Pressure Reduction Effects of Fermented Soybean, Chungkookjang (청국장의 항산화 및 혈압강하 효과)

  • Hwang, Jae-Sung;Kim, Sung-Jo;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.54-57
    • /
    • 2009
  • Fermented soybean, Chungkookjang has diverse bioactive compounds including antioxidants and peptides. Ethanol extract from Chungkookjang exhibited absorbance of 0.55 at 285 nm, where amino acids and peptides containing phenol are known to exist. Antioxidant activity of Chungkookjang was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. With increasing concentrations of ethanol extracts, their antioxidant activities increased. Blood pressure was determined every two hours after taking raw Chungkookjang which does not contain salts. In 6 h, systolic blood pressure dropped by 14 mmHg, and diastolic one dropped by 8 mmHg, which was statistically significant. Daidzein, antioxidants, angiotensin I-converting enzyme (ACE) inhibitor such as Lys-Pro which are rich in Chungkookjang might contribute to the reduction of blood pressure.

Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein

  • Cho, Dae-Yeon;Jo, Kyungae;Cho, So Young;Kim, Jin Man;Lim, Kwangsei;Suh, Hyung Joo;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • This study utilized commercially available proteolytic enzymes to prepare egg-white protein hydrolysates (EPHs) with different degrees of hydrolysis. The antioxidant effect and functionalities of the resultant products were then investigated. Treatment with Neutrase yielded the most ${\alpha}$-amino groups (6.52 mg/mL). Alcalase, Flavourzyme, Protamex, and Ficin showed similar degrees of ${\alpha}$-amino group liberation (3.19-3.62 mg/mL). Neutrase treatment also resulted in the highest degree of hydrolysis (23.4%). Alcalase and Ficin treatment resulted in similar degrees of hydrolysis. All hydrolysates, except for the Flavourzyme hydrolysate, had greater radical scavenging activity than the control. The Neutrase hydrolysate showed the highest 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity ($IC_{50}=3.6mg/mL$). Therefore, Neutrase was identified as the optimal enzyme for hydrolyzing egg-white protein to yield antioxidant peptides. During Neutrase hydrolysis, the reaction rate was rapid over the first 4 h, and then subsequently declined. The $IC_{50}$ value was lowest after the first hour (2.99 mg/mL). The emulsifying activity index (EAI) of EPH treated with Neutrase decreased, as the pH decreased. The EPH foaming capacity was maximal at pH 3.6, and decreased at an alkaline pH. Digestion resulted in significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS radical scavenging activity. The active peptides released from egg-white protein showed antioxidative activities on ABTS and DHHP radical. Thus, this approach may be useful for the preparation of potent antioxidant products.

Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity

  • Noh, Dong Ouk;Suh, Hyung Joo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.183-189
    • /
    • 2015
  • In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of ${\alpha}$-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of ${\alpha}$-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and ${\alpha}$-amino nitrogen content after 24 hhydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products.

Characterization of an antioxidant peptide from katsuobushi (dried bonito) protein hydrolysates

  • Lee, Jung Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • The objective of the current study was to evaluate the inhibitory and antioxidant activities of powdered katsuobushi (dried bonito) protein hydrolysates and their corresponding fractions. The powdered katsuobushi (dried bonito) hydrolysates were obtained by enzymatic hydrolysis using Alcalase, ${\alpha}$-chymotrypsin, Neutrase, pepsin, papain, and trypsin. The antioxidant efficacy of the respective hydrolysates were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, superoxide, and alkyl radical-scavenging activities. Among the hydrolysates, the peptic-derived hydrolysate exhibited the highest antioxidant activity compared to other enzymatic hydrolysates. Therefore, the peptic-derived hydrolysate was further analyzed, and was found to contain an active peptide with an amino acid sequence identified as Pro-Met-Pro-Leu-Asn-Ser-Cys (756 Da). The purified peptides from powdered katsuobushi (dried bonito) had an $EC_{50}$ value of $105.82{\mu}M$, and exhibited an inhibitory effect against DNA oxidation induced by hydroxyl radicals. Taken together, these results suggests that powdered katsuobushi (dried bonito) could be used as a natural antioxidant in functional foods and prevent oxidation reactions in food processing.