• Title/Summary/Keyword: Antioxidant Properties

Search Result 1,948, Processing Time 0.039 seconds

The Gastroprotective and Antioxidative Effects of Lonicera japonica water extract on HCl/ethanol-induced Gastric Mucosa Damage in Rats (인동(忍冬) 열수 추출물의 항산화 효과 및 HCl-Ethanol로 유도된 위염 동물 모델에서의 위 점막 손상 보호 효과)

  • Sim, Mi-Ok;Lee, Hyun Joo;Jang, Ji Hun;Jung, Ho-Kyung;Yang, Beodul;Woo, Kyeong Wan;Hwang, Taeyeon;Kim, Sunyoung;Nho, Jonghyun;Cho, Hyun-Woo
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.57-62
    • /
    • 2019
  • Objective : Gastritis is a major complication of gastrointestinal disease. Lonicera japonica is used in folk medicine to treat different diseases such as exopathogenic wind-heat, epidemic febrile diseases, sores, carbuncles and some infectious diseases. Therefore, this study examined the effects of Lonicera japonica water extract (LJE) on HCl/ethano-linduced acute gastric ulceration and anti-oxidants properties. Methods : LC-ESI-IT-TOF MS was employed for rapid identification of major compound from LJE. The antioxidant activities were evaluated through total polyphenol and flavonoid contents and radical scavenging assays and superoxide dismutase (SOD)-like activity. SD rats were randomly divided into five different groups including the normal group, ulcer group, positive group (20 kg/mg of omeprazole, ip), and experimental groups (100 kg/mg and 500 kg/mg of LJE, ip). Results : 4,5-Dicaffeoyl quinic acid, loganic acid, secologanic acid, sweroside, loganin, vogeloside were identified based on the detection of the molecular ion with those of literature data. The LJE was possessed free radical scavenging activities such as DPPH (IC50=189.7 ㎍/㎖), ABTS (IC50=164.5 ㎍/㎖), and SOD-like activity (IC50=405.02 ㎍/㎖). Macroscopic and histological analyses showed LJE treated group were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate and prostaglandin E2 levels were increased in rats treated with LJE. Conclusion : The present study has demonstrated the antioxidantive and gastroprotective effect of LJE, these findings suggested that LJE has the potential for use in treatment of gastric disorders.

Effects of quercetin on the improvement of lipid metabolism through regulating hepatic AMPK and microRNA-21 in high cholesterol diet-fed mice (고콜레스테롤 식이 섭취 쥐에서 quercetin의 간 AMPK 및 microRNA-21 조절을 통한 지질대사 개선 효과)

  • Lee, Mak-Soon;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.36-46
    • /
    • 2022
  • Purpose: Quercetin is a polyphenolic flavonoid abundant in many fruits and vegetables. It has potential health-beneficial properties, such as antioxidant, anti-obesity, anti-cancer, anti-diabetic and anti-inflammatory effects. The purpose of this study was to investigate whether the lipid metabolism improvement effect of quercetin affected the regulation of AMP-activated protein kinase (AMPK) activity and microRNA (miR)-21 expression in the liver of mice fed a high-cholesterol diet. Methods: Male C57BL/6J mice were fed with normal diet, quercetin-free diet and diets containing 0.05% or 0.1% quercetin for six weeks. Hypercholesterolemia was induced by adding 1% cholesterol and 0.5% cholic acid to all diets. Serum and liver triglyceride (TG), and total cholesterol (TC) concentrations were analyzed using a commercial enzymatic colorimetric kit. AMPK activity was quantified using an AMPK kinase assay kit. The levels of miR-21 and genes involved in lipid metabolism were measured by real-time quantitative polymerase chain reaction. Results: Supplementation of quercetin reduced serum and hepatic TG and TC levels without changing body weight and food intake. Dietary quercetin significantly inhibited the mRNA levels of hepatic sterol-regulatory element binding protein-1c, acetyl-CoA carboxylase 1 and fatty acid synthesis, which are involved in hepatic lipogenesis. Dietary quercetin enhanced AMPK activity and suppressed miR-21 expression, promoting hepatic lipid accumulation. Conclusion: These results suggest that the lipid-lowering effect of quercetin on the serum and liver of mice may be partially mediated by the regulation of lipogenic gene expression, AMPK activity and miR-21 expression in the liver of mice fed a high-cholesterol diet.

Pharmacological Effects and Pharmacokinetic Properties of Panax ginseng and Platycodon grandiflorum (인삼과 도라지의 약리적 효과와 약동학적 특성)

  • Sol Jung;Sang Joon An;Yeong In Kim;Hyo Jin Ju;Sang-Yeop Yi;Doo Young Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.305-318
    • /
    • 2022
  • To minimize the effects of aging-related comorbidities and to maintain a good quality of life and physical independence for a longer period, the improvement of lifestyle and dietary habits is essential, and healthy foods can be helpful. Among them, medicinal plant such as ginseng (Panax ginseng) and bellflower (Platycodon grandiflorum) contain natural functional substances and have been used for disease treatment and prevention since ancient times. This review summarizes the scientific of these treatments basis by investigating the pharmacological and pharmacokinetic effects of major functional substances on the aging-related health effects of Panax ginseng and Platycodon grandiflorum. The main functional substances of Panax ginseng and Platycodon grandiflorum are saponins, which have a similar molecular structure and confirmed anti-inflammatory, antioxidant, neuroprotective, anticancer, and anti-metabolic syndrome effects (improvement of hypertension, dyslipidemia, diabetes, and obesity). Both types of saponins in Panax ginseng (Ginseonside) and Platycodon grandiflorum (Platycoside) have very low absorption profiles in their purified state, but methods to increase absorption in the body through extraction or fermentation have been studied.

Ficus vasculosa Wall. ex Miq. Inhibits the LPS-Induced Inflammation in RAW264.7 Macrophages

  • Ji-Won, Park;Jin-Mi, Park;Sangmi, Eum;Jung Hee, Kim;Jae Hoon, Oh;Jinseon, Choi;Tran The, Bach;Nguyen, Van Sinh;Sangho, Choi;Kyung-Seop, Ahn;Jae-Won, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.574-583
    • /
    • 2022
  • Ficus vasculosa Wall. ex Miq. (FV) has been used as a herbal medicine in Southeast Asia and its antioxidant activity has been shown in previous studies. However, it has not yet been elucidated whether FV exerts anti-inflammatory effects on activated-macrophages. Thus, we aimed to evaluate the ameliorative property of FV methanol extract (FM) on lipopolysaccharide (LPS)-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 macrophages. The experimental results indicated that FM decreased the production of inflammatory mediators (NO/PGE2) and the mRNA/protein expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. FM also reduced the secretion of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 in LPS-stimulated RAW264.7 cells. Results also demonstrated that FM improved inflammatory response in LPS-stimulated A549 airway epithelial cells by inhibiting the production of cytokines, such as IL-1β, IL-6 and TNF-α. In addition, FM suppressed MAPK activation and NF-κB nuclear translocation induced by LPS. FM also upregulated the mRNA/protein expression levels of heme oxygenase-1 and the nuclear translocation of nuclear factor erythroid 2-related factor 2 in RAW264.7 cells. In an experimental animal model of LPS-induced acute lung injury, the increased levels of molecules in bronchoalveolar lavage (BAL) fluid were suppressed by FM administration. Collectively, it was founded that FM has anti-inflammatory properties on activated-macrophages by suppressing inflammatory molecules and regulating the activation of MAPK/NF-κB signaling.

Mulberry Low-Fat Ice Cream Supplemented with Synbiotic: Formulation, Phytochemical Composition, Nutritional Characteristics, and Sensory Properties

  • Kittisak Thampitak;Rattanaporn Pimisa;Pongsanat Pongcharoen;Suppasil Maneerat;Noraphat Hwanhlem
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.361-374
    • /
    • 2022
  • For this study, we designed and produced mulberry low-fat ice cream supplemented with synbiotics (MLF-ISS). The sensory characteristics and physical, chemical, and microbiological qualities of MLF-ISS were then determined. Mulberry juice inoculated with or without probiotic (Lactobacillus plantarum TISTR 926 and Saccharomyces boulardii CNCM I-745) was also tested at 37℃ for 24 h to determine probiotic growth rate, pH, total anthocyanin content (TAC), total phenolic content (TPC), and antioxidant activity (AA). Only the TAC of mulberry juice inoculated with S. boulardii CNCM I-745 increased considerably (p < 0.05) among these parameters. MLF-ISS was produced with varied mulberry fruit concentrations (0, 10, 20, 30, or 40%) (w/w). The MLF-ISS prepared with 30% mulberry fruit (w/w) (30-MLF-ISS) had a higher score in appearance, color, and sweetness (p < 0.05) when sensory qualities were measured using the 9-point hedonic scale method. In the CIE lab system (L*, a*, b*), the color values of 30-MLF-ISS were 27.80 ± 0.26, 12.99 ± 0.59, and 1.43 ± 0.05, respectively. The 30-MLF-ISS was also subjected to a proximate analysis. The melting rate of 30-MLF-ISS was 0.29 ± 0.03 g/min and the time it took for the first drop to fall was 37.00 ± 7.00 min. TAC, TPC, and AA of 30-MLF-ISS were observed to alter significantly (p < 0.05) during varied intervals of storage at - 18℃ (0, 30, and 60 days). The viability of probiotics in 30-MLF-ISS slightly decreased after storage at -18℃ for 8 weeks, but remained about 6 log CFU/g. During storage at -18℃ for 0 and 120 days, no pathogenic bacteria were detected in 30-MLF-ISS. These findings show that 30-MLF-ISS has nutritional and functional value, is free of foodborne pathogenic bacteria, is safe for consumers' health, and is suitable for application in the ice cream and related food industries.

Analysis of Chemical Components for Aerial and Underground Parts of Wild Ginseng and Evaluation of Skin Anti-aging Efficacy (야생 산삼 지상부 및 지하부의 화학성분 분석과 피부 항노화 효능 평가)

  • Seok-Seon Roh;Gwang Jin Lee;Byunghyun Kim;Bo Kyoung Hwang;Hyojin Kim;Yun Hee Chang;Jae-kun Yoou;Young-Sung Ju
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.85-95
    • /
    • 2023
  • Objectives : This study was intended to reveal the chemical profiles of aerial(leaf, stem) and underground(rhizome, radix) parts of wild ginseng, and to investigate their anti-aging effects on human skin cells. Methods : Wild ginseng, estimated for over 20 years, was divided into the aerial and underground parts. Total phenolic contents of each extracts were measured using a Folin-ciocalteu method. The contents of 18 amino acids, 8 minerals and 27 ginsenosides were determined by GC-FID, ICP-MS and LC-MS, respectively. The anti-aging effects, including the radical scavenging activity, the activation of mitochondrial function on human fibroblasts, and the proliferation activity on human keratinocyte progenitor cells, for the whole plant and underground part of wild ginseng were evaluated. Results : The total phenolic acids, amino acids, and minerals in the aerial part were more than twice as high as in the underground part. Compared to the cultivated ginseng root, there were various types of ginsenosides in both parts of wild ginseng, and the total amount was more than twice as high. In particular, the aerial part significantly contained ginsenoside F1, F2, C-Mc1, and C-O, and the distinctive patterns that distinguish each parts of wild ginseng from the cultivated ginseng root were derived. The whole plant and underground part of wild ginseng exhibited significant antioxidant effect(14.3-45.6%), activation of mitochondrial membrane potential(105.5-120.1%), and cell proliferation(112.1-125.4%). Conclusions : The entire plant and underground part of wild ginseng are high value-added plants and have beneficial effects on skin anti-aging properties through its abundant metabolites.

Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models

  • Ho-Geun Kang;Jin-Ho Lim;Hee-Yun Kim;Hyunyong Kim;Hyung-Min Kim;Hyun-Ja Jeong
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.670-681
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.

Effect of Organic Materials on Yields and Antioxidant Properties in Perilla frutescens var. acuta (유기자재 처리가 자소엽 수량성 및 항산화성에 미치는 영향)

  • Song Hee Ahn;Jung Seob Moon;Gue Saeng, Yeom;Se Hyun Ki;Dong Chun Cheong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.69-69
    • /
    • 2020
  • 소엽(Perilla frutescens var. acuta)은 흔히 차조기, 자소엽 등으로 불리며, 식재료나 약재로 이용된다. 최근 들어 자소엽을 향장 원료로 활용하고자 하는 시도가 이루어지고 있다. 따라서 유기자재 처리를 통해 향장원료 자소엽의 고품질 생산을 위하여 본 시험을 실시하였다. 전북 농업기술원 허브산채시험장에서 육묘한 종묘를 2020년 5월 노지 포장에 주간 간격 50cm 한줄 재배로 정식하였다. 처리는 규산염(성분량 20%), 키토산(성분량 5%)가 함유된 자재를 각각 500배, 1,000배 희석하여 6월 21일, 8월 3일, 8월 23일 총 3회에 걸쳐 압축 분무기를 이용해 작물이 충분히 적셔지도록 살포하였으며, 무처리구는 물을 살포하였다. 초장, 초폭, SPAD, 생체중, 건물중을 조사하였으며 잎과 꽃의 총 폴리페놀 함량, 총 플라보노이드 함량, FRAP(철환원 항산화력) 활성 ABTS+ 라디칼 저해활성을 측정하였다. 생육특성 중 초장과 초폭은 처리간 유의성은 없었으나 무처리, 규산염 500배, 키토산 1,000배 처리에서 대체로 높았으며, SPAD는 키토산 1,000배가 가장 양호하였다. 수량성은 모든 자재 처리구가 무처리구보다 많았으며, 지상부 생체중은 무처리 대비 키토산 1,000배는 14.1%, 건물중은 무처리 대비 11.9%로 키토산 1,000배 처리가 수량성이 가장 많았다. 총 폴리페놀 함량은 꽃보다 잎에서 더 높은 수치로 나타났으며, 잎의 폴리페놀 함량은 규산염 500배 처리에서 가장 많았다. 꽃은 1,000배 처리에서 가장 높았다. 총 플라보노이드 함량은 꽃이 잎보다 높았으며, 잎은 규산염 500배 처리, 꽃은 키토산 1,000배 처리에서 함량이 가장 많았다. FRAP 활성은 잎의 경우 규산염 500배 처리에서 높았으며, 꽃의 FRAP 활성은 키토산 1,000배에서 좋았으나 처리 간의 차이는 크지 않았다. 자소엽 잎의 ABTS+ 라디칼 저해 활성은 규산염 500배 처리에서 가장 높았으며, 꽃은 경우 무처리에 비하여 자재 처리가 높았으며, 500배보다 1,000배 처리에서 높은 라디칼 저해 활성을 보였다. 이상의 결과, 자소엽 유기자재 처리는 무처리보다 대체로 수량성과 항산화 활성이 높았으나 추가적으로 적정농도 구명 후 경제성 분석이 필요할 것으로 판단된다.

  • PDF

Potential Risk of Choline Alfoscerate on Isoflurane-Induced Toxicity in Primary Human Astrocytes

  • Hyun Jung Lee;Hye Rim Cho;Minji Bang;Yeo Song Lee; Youn Jin Kim; Kyuha Chong
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.4
    • /
    • pp.418-430
    • /
    • 2024
  • Objective : Isoflurane, a widely used common inhalational anesthetic agent, can induce brain toxicity. The challenge lies in protecting neurologically compromised patients from neurotoxic anesthetics. Choline alfoscerate (L-α-Glycerophosphorylcholine, α-GPC) is recognized for its neuroprotective properties against oxidative stress and inflammation, but its optimal therapeutic window and indications are still under investigation. This study explores the impact of α-GPC on human astrocytes, the most abundant cells in the brain that protect against oxidative stress, under isoflurane exposure. Methods : This study was designed to examine changes in factors related to isoflurane-induced toxicity following α-GPC administration. Primary human astrocytes were pretreated with varying doses of α-GPC (ranging from 0.1 to 10.0 µM) for 24 hours prior to 2.5% isoflurane exposure. In vitro analysis of cell morphology, water-soluble tetrazolium salt-1 assay, quantitative real-time polymerase chain reaction, proteome profiler array, and transcriptome sequencing were conducted. Results : A significant morphological damage to human astrocytes was observed in the group that had been pretreated with 10.0 mM of α-GPC and exposed to 2.5% isoflurane. A decrease in cell viability was identified in the group pretreated with 10.0 µM of α-GPC and exposed to 2.5% isoflurane compared to the group exposed only to 2.5% isoflurane. Quantitative real-time polymerase chain reaction revealed that mRNA expression of heme-oxygenase 1 and hypoxia-inducible factor-1α, which were reduced by isoflurane, was further suppressed by 10.0 µM α-GPC pretreatment. The proteome profiler array demonstrated that α-GPC pretreatment influenced a variety of factors associated with apoptosis induced by oxidative stress. Additionally, transcriptome sequencing identified pathways significantly related to changes in isoflurane-induced toxicity caused by α-GPC pretreatment. Conclusion : The findings suggest that α-GPC pretreatment could potentially enhance the vulnerability of primary human astrocytes to isoflurane-induced toxicity by diminishing the expression of antioxidant factors, potentially leading to amplified cell damage.

Comparison of color and water extracts of Caragana sinica flowers dried at different air temperatures (열풍건조 온도를 달리한 골담초 꽃의 색과 추출물 특성)

  • Hye-Jung Choi;Kwang-Sup Youn;Hun-Sik Chung
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.868-874
    • /
    • 2023
  • This study aimed to investigate the drying characteristics of Caragana sinica Rehder flowers, which are basic data necessary for increasing utilization. The flowers were harvested in mid-April and dried at different hot-air temperatures (50-90℃), and the physicochemical properties of the dried flowers were analyzed. It was found that the drying rate was proportional to the air temperature. The visual color of dried flowers was relatively strong in green when dried at 50℃, while browning was relatively severe when dried at 90℃. The greenness (-a* value) of the mechanical color of the powder decreased with increasing temperature, and the yellowness (b* value) decreased with increasing temperature above 70℃. The soluble solids of the hot water extract were maintained at a certain level after increasing up to 70℃, and the pH decreased with increasing temperature. The total polyphenol contents tended to increase with increasing temperature, and DPPH radical scavenging activity did not show a significant change after increasing up to 70℃. These results suggest that the hot-air drying temperature had a significant effect on the physicochemical characteristics of the C. sinica flower. The appropriate hot-air drying temperature was judged to be less than 50℃ for maintaining the unique color, and approximately 70℃ considering the high hot-water extraction yield and antioxidant capacity.