• 제목/요약/키워드: Antinociceptive tolerance

검색결과 8건 처리시간 0.021초

척수강 내로 투여한 Epigallocatechin Gallate이 모르핀의 항침해 작용에 대한 내성 발생에 미치는 효과 (The Effect of Intrathecal Epigallocatechin Gallate on the Development of Antinociceptive Tolerance to Morphine)

  • 김웅모;배홍범;최정일
    • The Korean Journal of Pain
    • /
    • 제22권3호
    • /
    • pp.199-205
    • /
    • 2009
  • Background: A major ingredient of green tea is epigallocatechin-3-gallate (EGCG), and this is known to have many beneficial effects for cancer prevention and also on the cardiovascular system and neurodegenerative diseases through its anti-oxidant, anti-angiogenic, anti-inflammatory, lipid-lowering and neuroprotective properties. Its actions on nociception and the spinal nervous system have been examined in only a few studies, and in these studies EGCG showed an antinociceptive effect on inflammatory and neuropathic pain, and a neuroprotective effect in motor neuron disease. This study was performed to investigate the effect of EGCG on acute thermal pain and the development of morphine tolerance at the spinal level. Methods: The experimental subjects were male Sprague-Dawley rats and the Hot-Box test was employed. A single or double-lumen intrathecal catheter was implanted at the lumbar enlargement for drug administration. An osmotic pump was used to infuse morphine for 7 days for induction of morphine tolerance. EGCG was injected repeatedly for 7 days at twice a day through the intrathecal catheter. Results: Intrathecal EGCG increased the paw withdrawal latency (PWL) after repeated administration for 7 days at twice a day, but this did not happen with administering on single bolus injection of EGCG. In addition, the antinociceptive effect of intrathecal morphine was not affected by co-administration with EGCG. A continuous 7-day infusion of morphine caused a significant decrease of the PWL in the control group (M + S, morphine plus saline). In contrast, intrathecal EGCG injection over 7 days blocked the decrease of the PWL in the experiment group (M + E, morphine plus EGCG). Conclusions: Intrathecal ECGC produced a weak antinociceptive effect for acute thermal pain, but it did not change the morphine's analgesic effect. However, the development of antinociceptive tolerance to morphine was attenuated by administering intrathecal EGCG.

모르핀내성시 뇌실내 NO 합성억제제 투여가 모르핀의 진통효과에 미치는 형향 (Supraspinal Nitric Oxide Synthesis Inhibition Enhanced Antinociception of Morphine in Morphine Tolerant Rats)

  • 송호경;장연
    • The Korean Journal of Pain
    • /
    • 제14권2호
    • /
    • pp.225-230
    • /
    • 2001
  • Background: Opioids such as morphine are widely used in the treatment for pain, but chronic treatment with morphine can be complicated by the development of tolerance. The mechnisms of tolerance were still not completely understood, but recently it has been reported that NOS inhibitors can prevent development of morphine tolerance in animals. The present study accessed the possible role of supraspinal NO on antinociceptive effect of morphine in morphine tolerance using a highly specific inhibitor of the neuronal isoform of NOS, 1-(2-trifluoromethylphenyl) imidazole (TRIM). Methods: Thirty two male SD rats (300 g) were prepared with intracerebroventricular (icv) and IV cannulae. We administrated IV morphine, 3 mg/kg, daily for 4 days, resulting in tolerance. On the fifth day, a challenge dose of morphine, 3 mg/kg, was administered following pretreatment with icv TRIM, $10{\mu}g$. We also evaluated the antinociceptive effect of icv TRIM alone and the effect on a single dose of morphine (3 mg/kg) in morphine nave rats. Antinociception from morphine was determined by response to intraplantar injection of 5% formalin $100{\mu}l$ was qualified as the number of flinches in the first 0-10 min (first phase), 10-40 min Phase IIa, and 40-60 min (Phase IIb). Results: Pretreatment with icv TRIM significantly enhanced the antinociceptive effects of systemically administered morphine in morphine tolerant rats. The antinociceptive effect of morphine in opioid nave rats was also significantly increased by pretreatment with icv TRIM. Conclusions: Our results further support the hypothesis that supraspinal NO modulates morphine-sensitive nociceptive process in morphine tolerance due to chronic intravenous administration.

  • PDF

Nalbuphine의 병용투여에 의한 morphine의 내성 및 의존성 형성 저하효과 (The Development of Tolerance to and Dependence on Morphine are Reduced by Co-administration of Nalbuphine in Rat)

  • 정면우;임화경;전용준;김혜정;박인숙;오우용;왕소영;박윤주;강주희
    • 약학회지
    • /
    • 제46권4호
    • /
    • pp.276-282
    • /
    • 2002
  • Morphine has been used widely on the treatment of many types of chronic pain. However the development of tolerance to morphine by repeat application is a major problem in pain therapy. The purpose of the present study was to investigate whether combined administration of nalbuphine with morphine affects the development of tolerance to and dependence on morphine. We hypothesize that the use of nalbuphine, k-agonist may prove to be useful adjunct therapy to prevent morphine-induced undesirable effects in the management of some forms of chronic pain. Morphine (10 mg/kg) was injected to rats intraperitoneally for 5 days. The variable dose of nalbuphine (0.1, 1.0 and 5.0 mg/kg) was administered (i.p.) in combination with morphine injection. The development of tolerance to morphine was assessed by measuring the antinociceptive effect with the Randall-Selitto apparatus. The development of dependence on morphine was determined by the scoring the precipitated withdrawal signs for 20 min after injection of naloxone (10 mg/kg, i.p.). Nalbuphine did not attenuate antinociceptive effect of morphine in rats. Interestingly, combined administration of morphine with nalbuphine (100:1) significantly attenuated the development of morphine tolerance and dependence. These results suggest that the co-administration of nalbuphine with morphine in chronic morphine treatment can be one of therapies to reduce the development of dependence on morphine.

Formalin Pretreatment Attenuates Tail-Flick Inhibition Induced by ${\beta}$-Endorphin Administered Intracerebroventricularly or Intrathecally in Mice

  • Han Ki-Jung;Choi Seong-Soo;Shim Eon-Jeong;Seo Young-Jun;Kwon Min-Soo;Lee Jin-Young;Lee Han-Kyu;Suh Hong-Won
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.227-231
    • /
    • 2005
  • We examined the effect of the subcutaneous (s.c.) pretreatment of formalin into both hind paws of mice on the antinociception induced by the intracerebroventricularly (i.c.v.) or intrathecally (i.t.) administration of ${\beta}$-endorphin using the tail-flick test. Pretreatment with formalin ($5\%$) for 5 h had no affect on the i.c.v. administered ${\beta}$-endorphin-induced tail-flick response. However, pretreatment with formalin for 40 h attenuated the tail-flick inhibition induced by i.c.v. administered ${\beta}$-endorphin. This antinociceptive tolerance to i.c.v. ${\beta}$-endorphin continued up to 1 week, but to a lesser extent. Pretreatment with formalin for 5 and 40 h significantly reduced the i.t. ${\beta}$-endorphin-induced inhibition of the tail-flick response, which continued up to 1 week. The s.c. formalin treatment increased the hypothalamic pro-opiomelanocortin (POMC) mRNA level at 2 h, but this returned to the basal level after 40 h. Our results suggest that the increase in the POMC mRNA level in the hypothalamus appears to be involved in the supraspinal or spinal ${\beta}$-endorphin-induced antinociceptive tolerance in formalin-induced inflammatory pain.

Attenuation of Morphine Tolerance and Withdrawal Syndrome by Coadministration of Nalbuphine

  • Jang, So-Yong;Kim, Hee-Jeong;Kim, Dong-Hyun;Jeong, Myeon-Woo;Ma, Tangen;Kim, Seong-Youl;Ho, Ing K.;Oh, Sei-Kwan
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.677-684
    • /
    • 2006
  • Morphine has been used widely on the treatment of many types of chronic pain. However the development of tolerance to and dependence on morphine by repeat application is a major problem in pain therapy. The purpose of the present study was to investigate whether combined administration of nalbuphine with morphine affects the development of tolerance to and dependence on morphine. We hypothesize that the use of nalbuphine, ${\kappa}-agonist$ may prove to be useful adjunct therapy to prevent morphine-induced undesirable effects in the management of some forms of chronic pain. Morphine (10 mg/kg) was injected to rats intraperitoneally for 5 day. The variable dose of nalbuphine (0.1, 1.0 and 5.0 mg/kg) was administered (i.p.) in combination with morphine injection. The development of morphine tolerance was assessed by measuring the antinociceptive effect with the Randall-Selitto apparatus. The development of dependence on morphine was determined by the scoring the precipitated withdrawal signs for 30 min after injection of naloxone (10 mg/kg, i.p.). Nalbuphine did not attenuate antinociceptive effect of morphine in rats. Interestingly, combined administration of morphine with nalbuphine (10:1) significantly attenuated the development of dependence on morphine. The elevation of $[^3H]MK-801$ binding in frontal cortex, dentate gyrus, and cerebellum after chronic morphine infusion was suppressed by the coadministration of nalbuphine. In addition, the elevation of NR1 expression by morphine was decreased by the coadministration of nalbuphine in rat cortex. These results suggest that the coadministration of nalbuphine with morphine in chronic pain treatment can be one of therapies to reduce the development of tolerance to and dependence on morphine.

Calcium/calmodulin-dependent protein kinase II is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rat nucleus accumbens

  • Kai Wen Xi;De Duo Chen;Xin Geng;Yan Bian;Min Xin Wang;Hui Bian
    • The Korean Journal of Pain
    • /
    • 제36권2호
    • /
    • pp.163-172
    • /
    • 2023
  • Background: Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats. Methods: Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting. Results: Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance. Conclusions: This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.

Ferroptosis inhibitor ferrostatin-1 attenuates morphine tolerance development in male rats by inhibiting dorsal root ganglion neuronal ferroptosis

  • Hasan Dirik;Ahmet Sevki Taskiran;Ziad Joha
    • The Korean Journal of Pain
    • /
    • 제37권3호
    • /
    • pp.233-246
    • /
    • 2024
  • Background: Ferrostatin-1 and liproxstatin-1, both ferroptosis inhibitors, protect cells. Liproxstatin-1 decreases morphine tolerance. Yet, ferrostatin-1's effect on morphine tolerance remains unexplored. This study aimed to evaluate the influence of ferrostatin-1 on the advancement of morphine tolerance and understand the underlying mechanisms in male rats. Methods: This experiment involved 36 adult male Wistar albino rats with an average weight ranging from 220 to 260 g. These rats were categorized into six groups: Control, single dose ferrostatin-1, single dose morphine, single dose ferrostatin-1 + morphine, morphine tolerance (twice daily for five days), and ferrostatin-1 + morphine tolerance (twice daily for five days). The antinociceptive action was evaluated using both the hot plate and tail-flick tests. After completing the analgesic tests, tissue samples were gathered from the dorsal root ganglia (DRG) for subsequent analysis. The levels of glutathione, glutathione peroxidase 4 (GPX4), and nuclear factor erythroid 2-related factor 2 (Nrf2), along with the measurements of total oxidant status (TOS) and total antioxidant status (TAS), were assessed in the tissues of the DRG. Results: After tolerance development, the administration of ferrostatin-1 resulted in a significant decrease in morphine tolerance (P < 0.001). Additionally, ferrostatin-1 treatment led to elevated levels of glutathione, GPX4, Nrf2, and TOS (P < 0.001), while simultaneously causing a decrease in TAS levels (P < 0.001). Conclusions: The study found that ferrostatin-1 can reduce morphine tolerance by suppressing ferroptosis and reducing oxidative stress in DRG neurons, suggesting it as a potential therapy for preventing morphine tolerance.

Antinociceptive Effects of Prim-O-Glucosylcimifugin in Inflammatory Nociception via Reducing Spinal COX-2

  • Wu, Liu-Qing;Li, Yu;Li, Yuan-Yan;Xu, Shi-hao;Yang, Zong-Yong;Lin, Zheng;Li, Jun
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.418-425
    • /
    • 2016
  • We measured anti-nociceptive activity of prim-o-glucosylcimifugin (POG), a molecule from Saposhnikovia divaricate (Turcz) Schischk. Anti-nociceptive or anti-inflammatory effects of POG on a formalin-induced tonic nociceptive response and a complete Freund's adjuvant (CFA) inoculation-induced rat arthritis pain model were studied. Single subcutaneous injections of POG produced potent anti-nociception in both models that was comparable to indomethacin analgesia. Anti-nociceptive activity of POG was dose-dependent, maximally reducing pain 56.6% with an $ED_{50}$ of 1.6 mg. Rats given POG over time did not develop tolerance. POG also time-dependently reduced serum TNF${\alpha}$, IL-$1{\beta}$ and IL-6 in arthritic rats and both POG and indomethacin reduced spinal prostaglandin E2 ($PGE_2$). Like indomethacin which inhibits cyclooxygenase-2 (COX-2) activity, POG dose-dependently decreased spinal COX-2 content in arthritic rats. Additionally, POG, and its metabolite cimifugin, downregulated COX-2 expression in vitro. Thus, POG produced potent anti-nociception by downregulating spinal COX-2 expression.