• 제목/요약/키워드: Antimicrobial efficacy

검색결과 248건 처리시간 0.024초

젖소 족피부염(足皮膚炎)에 대한 오존연고의 치료(治療) 효과(效果) (The Efficacy of Ozone Ointment Therapy on Pododermatitis of Dairy Cows)

  • 이수진;전무형;조성환;김덕환;박창식;김명철
    • 한국임상수의학회지
    • /
    • 제23권3호
    • /
    • pp.279-285
    • /
    • 2006
  • Thirty dairy cows with pododermatitis were selected and treatment effect of ozone ointment for bovine pododermatitis was investigated. In addition, bactericidal effect of ozone ointment on etiological agent of bovine pododermatitis was evaluated. The pathohistological examination for the pododermatitis, according to application with ozone ointment was investigated. Thirty dairy cows were divided two groups: control group(vaseline group: 15 cows), treatment group(ozone ointment group: 15 cows). Various parameters were evaluated in terms of the lameness score, swelling score, lesion score, WBC, neutrophil, pathohistological finding, and antimicrobial action. As compared with vaseline group, ozone ointment group revealed significant decrease of lameness(p<0.05), swelling(p<0.01) and lesion score(p<0.05) were shown in hoof lesions on 14 days after application. In hematological findings, WBC count revealed slightly high values within normal range before treatment, however, this was 1Corresponding author improved on 14 days after application of ozone ointment. The number of neutrophils was slightly higher than that of normal, however, this was improved on 14 days after application of ozone ointment. In pathohistological findings, normal dermal tissue was found in tissues with pododermatitis on 14 days after application of ozone ointment. In antimicobial action, marked decrease rate of bacteria was observed in feet of all cases treated with ozone ointment. The decreasing rate of bacteria in anaerobic culture was higher than that in aerobic culture.

젖소 족피부염(足皮膚炎)에 대한 오존수의 치료(治療) 효과(效果) (The Efficacy of Ozonated Water Therapy on Pododermatitis of Dairy Cows)

  • 이수진;조성환;전무형;김덕환;박창식;한홍율;김명철
    • 한국임상수의학회지
    • /
    • 제23권3호
    • /
    • pp.272-278
    • /
    • 2006
  • This study was carried out to determine therapeutic the effect of ozonated water therapy on bovine pododermatitis. In addition, bactericidal effect of ozonated water on etiological agent of bovine pododermatitis was examined. The pathohistological examination for the pododermatitis, according to application with ozonated water and ozone ointment was investigated. Thirty healthy cattle were divided two groups(each of 15) : control group(povidone group), treatment group(ozone solution group). Various parameters were evaluated in terms of the lameness score, swelling score, lesion score, WBC count, neutrophil count, pathohistological finding, and antimicrobial action. The decrease of lameness and lesion score were shown in hoof lesions on 14 days after application of ozonated water. Significant decrease of swelling was shown in hoof lesions on 14 days 1Corresponding author after application of ozonated water(p<0.01). In hematological findings, WBC count revealed values within normal range. The number of neutrophils was slightly higher than that of normal, however, this was improved on 14 days after application of ozonated water. In pathohistological findings, recovery was rapid macroscopically and microscopically in the treatment with ozonated water on the hoof lesions and ozonated water was effective. In antimicobial action, bactericidal effect was observed in treatment with ozonated water on the hoof lesions and ozonated water was effective.

Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review

  • Bajpai, Vivek K.;Kang, So-Ra;Xu, Houjuan;Lee, Soon-Gu;Baek, Kwang-Hyun;Kang, Sun-Chul
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.207-224
    • /
    • 2011
  • Diseases caused by plant pathogenic bacteria constitute an emerging threat to global food security. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in several host plants leading to considerable losses in productivity and quality of harvests. Despite the ranges of controlling techniques available, the microbiological safety of economically important crops and crop plants including fruits and vegetables continues to be a major concern to the agriculture industry. On the other hand, many of the currently available antimicrobial agents for agriculture are highly toxic, non-biodegradable and cause extended environmental pollution. Besides, the use of antibiotics has provoked an increased resistance among the bacterial pathogens and their pathovars. Thus, novel efficient and safe remedies for controlling plant bacterial diseases are necessary. There has been an increasing interest worldwide on therapeutic values of natural products such as essential oils, hence the purpose of this review is to provide an overview of the published data on the antibacterial efficacy of essential oils that could be considered suitable for application in agriculture as biocontrol measures against plant pathogenic bacteria of Xanthomonas species. The current knowledge on the use of essential oils to control Xanthomonas bacteria in vitro and in vivo models has been discussed. A brief description on the legal aspects on the use of essential oils against bacterial pathogens has also been presented. Through this review, a mode of antibacterial action of essential oils along with their chemical nature and the area for future research have been thoroughly discussed.

Antimicrobial Effects of Photodynamic Therapy Using Blue Light Emitting Diode with Photofrin and Radachlorine against Propionibacterium acnes

  • Kwon, Pil-Seung
    • 대한임상검사과학회지
    • /
    • 제47권1호
    • /
    • pp.6-10
    • /
    • 2015
  • Photodynamic therapy (PDT) apply photosensitizers and light. The purpose of this study was to evaluate the in vitro efficacy of PDT using blue LED (light emitting diode) with photofrin and radachlorin for Propionibacterium acnes. The colony forming units method was used to assess the antibacterial activity. Suspension (1 mL) containing P. acnes at $1{\times}10^5CFU/mL$ were prepared and then 2 fold serial diluted to $12.5{\mu}g/mL$ from $50{\mu}g/mL$ concentration of photofrin and radachlorin. After 60 minutes incubation, light was irradiated for 10 to 30 minutes using the following light source of wavelength 460 nm, each energy density 36, 72 and $108J/cm^2$. Bacterial growth was evaluated after 72 hours incubation in a Phenylethanol Blood Agar (PEBA) culture. In addition, flow cytometric analysis were performed to measure the live cell after PDT. Also transmission electron microscopy (TEM) was employed to evaluate the effect of pathogens by PDT. The PDT Group was perfectly killed to all kind of photosensitizers dose of $12.5{\mu}g/mL$ with irradiation of 10 minutes. Also other Groups were killed to all kind of photosensitizers dose of $6.25{\mu}g/mL$ with irradiation time of 20 and 30 minutes. The flow cytometry showed a lower number of viable bacteria in the PDT group compared to the control group. The images of the TEM results were showed in cytoplasmic membrane damage and partially deformed to cell morphologies. These results suggest that radachlorin and photofrin combine blue LED PDT can be effectively treated when was proved treatment for acnes therapy.

Formulation of Ceftriaxone Conjugated Gold Nanoparticles and Their Medical Applications against Extended-Spectrum β-Lactamase Producing Bacteria and Breast Cancer

  • El-Rab, Sanaa M.F. Gad;Halawani, Eman M.;Hassan, Aziza M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1563-1572
    • /
    • 2018
  • Gold nanoparticles (AuNP) and their conjugates have been gaining a great deal of recognition in the medical field. Meanwhile, extended-spectrum ${\beta}$-lactamases (ESBL)-producing bacteria are also demonstrating a challenging problem for health care. The aim of this study was the biosynthesis of AuNP using Rosa damascenes petal extract and conjugation of ceftriaxone antibiotic (Cef-AuNP) in inhibiting ESBL-producing bacteria and study of in vitro anticancer activity. Characterization of the synthesized AuNP and Cef-AuNP was studied. ESBL-producing strains, Acinetobacter baumannii ACI1 and Pseudomonas aeruginosa PSE4 were used for testing the efficacy of Cef-AuNP. The cells of MCF-7 breast cancer were treated with previous AuNP and Cef-AuNP at different time intervals. Cytotoxicity effects of apoptosis and its molecular mechanism were evaluated. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy established the formation of AuNP and Cef-AuNP. Transmission electron microscope demonstrated that the formed nanoparticles were of different shapes with sizes of 15~35 nm and conjugation was established by a slight increase in size. Minimum inhibitory concentration (MIC) values of Cef-AuNP against tested strains were obtained as 3.6 and $4{\mu}g/ml$, respectively. Cef-AuNP demonstrated a decrease in the MIC of ceftriaxone down to more than 27 folds on the studied strains. The biosynthesized AuNP displayed apoptotic and time-dependent cytotoxic effects in the cells of MCF-7 at a concentration of $0.1{\mu}g/ml$ medium. The Cef-AuNP have low significant effects on MCF-7 cells. These results enhance the conjugating utility in old unresponsive ceftriaxone with AuNP to restore its efficiency against otherwise resistant bacterial pathogens. Additionally, AuNP may be used as an alternative chemotherapeutic treatment of MCF-7 cancer cells.

Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface: an in vitro study

  • Lee, Hae;Kim, Yong-Gun;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si Young;Lee, Jae-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • 제48권3호
    • /
    • pp.164-173
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the antimicrobial effect of a newly devised toothbrush with light-emitting diodes (LEDs) on Porphyromonas gingivalis attached to sandblasted and acid-etched titanium surfaces. Methods: The study included a control group, a commercial photodynamic therapy (PDT) group, and 3 test groups (B, BL, and BLE). The disks in the PDT group were placed in methylene blue and then irradiated with a diode laser. The B disks were only brushed, the BL disks were brushed with an LED toothbrush, and the BLE disks were placed into erythrosine and then brushed with an LED toothbrush. After the different treatments, bacteria were detached from the disks and spread on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy was performed to visualize bacterial alterations. Results: The number of viable bacteria in the BLE group was significantly lower than that in the other groups (P<0.05). Scanning electron microscopy showed that bacterial cell walls were intact in the control and B groups, but changed after commercial PDT and LED exposure. Conclusions: The findings suggest that an LED toothbrush with erythrosine treatment was more effective than a commercial PDT kit in reducing the number of P. gingivalis cells attached to surface-modified titanium in vitro.

Gallic Acid Enhancement of Gold Nanoparticle Anticancer Activity in Cervical Cancer Cells

  • Daduang, Jureerut;Palasap, Adisak;Daduang, Sakda;Boonsiri, Patcharee;Suwannalert, Prasit;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.169-174
    • /
    • 2015
  • Cervical cancer (CxCa) is the most common cancer in women and a prominent cause of cancer mortality worldwide. The primary cause of CxCa is human papillomavirus (HPV). Radiation therapy and chemotherapy have been used as standard treatments, but they have undesirable side effects for patients. It was reported that gallic acid has antioxidant, antimicrobial, and anticancer activities. Gold nanoparticles are currently being used in medicine as biosensors and drug delivery agents. This study aimed to develop a drug delivery agent using gold nanoparticles conjugated with gallic acid. The study was performed in uninfected (C33A) cervical cancer cells, cervical cancer cells infected with HPV type 16 (CaSki) or 18 (HeLa), and normal Vero kidney cells. The results showed that GA inhibited the proliferation of cancer cells by inducing apoptosis. To enhance the efficacy of this anticancer activity, 15-nm spherical gold nanoparticles (GNPs) were used to deliver GA to cancer cells. The GNPs-GA complex had a reduced ability compared to unmodified GA to inhibit the growth of CxCa cells. It was interesting that high-concentration ($150{\mu}M$) GNPs-GA was not toxic to normal cells, whereas GA alone was cytotoxic. In conclusion, GNPs-GA could inhibit CxCa cell proliferation less efficiently than GA, but it was not cytotoxic to normal cells. Thus, gold nanoparticles have the potential to be used as phytochemical delivery agents for alternative cancer treatment to reduce the side effects of radiotherapy and chemotherapy.

Dietary addition of a standardized extract of turmeric (TurmaFEEDTM) improves growth performance and carcass quality of broilers

  • Johannah, NM;Ashil, Joseph;Balu, Maliakel;Krishnakumar, IM
    • Journal of Animal Science and Technology
    • /
    • 제60권5호
    • /
    • pp.8.1-8.9
    • /
    • 2018
  • Background: Indiscriminate use of antibiotics in livestock and poultry farming has caused emergence of new pathogenic strains. The situation has warrented the development of safe and alternative growth promoters and immunity enhancers in livestock. Herbal additives in animal and bird feed is a centuries-old practice. Thus, the present study investigated the efficacy of a standardized formulation of lipophilic turmeric extract containing curcumin and turmerones, (TF-36), as a natural growth promoter poultry feed additive. Methods: The study was designed on 180 one-day old chicks, assigned into three groups. Control group ($T_0$) kept on basal diet and supplemented groups $T_{0.5}$ and $T_1$ fed with 0.5% and 1% TF-36 fortified basal diet for 42 days. Each dietary group consisted of six replicates of ten birds. Body weight, food intake, food conversion ratio, skin colour, blood biochemical analysis and antioxidant status of serum were investigated. Results: Body weight improved significantly in $T_1$ with a 10% decrease in FCR as compared to the control. TF-36 supplementation in $T_1$ enhanced the antioxidant enzyme activity significantly (p < 0.05) with a decrease (p < 0.05) in lipid peroxidation. It also caused a slight yellow skin pigmentation without any change in meat color, indicating the bioavailability of curcumin from TF-36. However, no significant change in the concentration of serum creatinine, total protein and liver enzyme activities were observed, indicating the safety. Conclusion: In summary, we concluded that TF-36 can be a natural feed additive to improve growth performance in poultry, probably due to the better antioxidant activity and antimicrobial effects contributed by the better bioavailability of curcuminoids and turmerones. Besides, curcuminoids and turmerones were also known to be gastroprotective and anti-inflammatory agents.

Effect of Chlorine Dioxide Gas Application to Egg Surface: Microbial Reduction Effect, Quality of Eggs, and Hatchability

  • Chung, Hansung;Kim, Hyobi;Myeong, Donghoon;Kim, Seongjoon;Choe, Nong-Hoon
    • 한국축산식품학회지
    • /
    • 제38권3호
    • /
    • pp.487-497
    • /
    • 2018
  • Controlling of microorganisms in the industrial process is important for production and distribution of hatching and table eggs. In the previous study, we reported that chlorine dioxide ($ClO_2$) gas of a proper concentration and humidity can significantly reduce the load of Salmonella spp. on eggshells. In this study, we compared microbial reduction efficacy on egg's surface using hatching eggs and table eggs, internal quality of table eggs, and hatchability after both the conventional method (washing and UV expose, fumigation with formalin) and $ClO_2$ gas disinfection. Application of 40 ppm $ClO_2$ gas to the table and hatching eggs, respectively, reduced the aerobic plate count (APC) with no statistical difference compared with the conventional methods. Additionally, we didn't observed that any significant difference in albumin height, Haugh unit (HU), and yolk color, this result confirms that 40 ppm $ClO_2$ had no effect on the internal quality of the table eggs, when comparing with the UV treatment method. The hatchability of hatching eggs was not statistical different between formaldehyde fumigation and 80 ppm $ClO_2$ gas treatment, though the value was decreased at high concentration of 160 ppm $ClO_2$ gas. From these results, we recommend that $ClO_2$ gas can be used as a safe disinfectant to effectively control egg surface microorganisms without affecting egg quality.

Inducible spy Transcription Acts as a Sensor for Envelope Stress of Salmonella typhimurium

  • Jeong, Seon Mi;Lee, Hwa Jeong;Park, Yoon Mee;Kim, Jin Seok;Lee, Sang Dae;Bang, Iel Soo
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.134-138
    • /
    • 2017
  • Salmonella enterica infects a broad range of host animals, and zoonostic infection threatens both public health and the livestock and meat processing industries. Many antimicrobials have been developed to target Salmonella envelope that performs essential bacterial functions; however, there are very few analytical methods that can be used to validate the efficacy of these antimicrobials. In this study, to develop a potential biosensor for Salmonella envelope stress, we examined the transcription of the S. enterica serovar typhimurium spy gene, the ortholog of which in Escherichia coli encodes Spy (${\underline{s}}pheroplast$ ${\underline{p}}rotein$ ${\underline{y}}$). Spy is a chaperone protein expressed and localized in the periplasm of E. coli during spheroplast formation, or by exposure to protein denaturing conditions. spy expression in S. typhimurium was examined by constructing a spy-gfp transcriptional fusion. S. typhimurium spy transcription was strongly induced during spheroplast formation, and also when exposed to membrane-disrupting agents, including ethanol and the antimicrobial peptide polymyxin B. Moreover, spy induction required the activity of regulator proteins BaeR and CpxR, which are part of the major envelope stress response systems BaeS/BaeR and CpxA/CpxR, respectively. Results suggest that monitoring spy transcription may be useful to determine whether a molecule particularly cause envelope stress in Salmonella.