• Title/Summary/Keyword: Antimicrobial agent

Search Result 556, Processing Time 0.031 seconds

Prevalence and antimicrobial resistance of Salmonella isolated in poultry farms (초생추의 살모넬라 감염율과 항생제 내성)

  • Kang, Mi-Seon;Lee, Su-Ji;Shin, Young-Sik
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • An investigation was carried out to determine the prevalence and antimicrobial resistance of Salmonella isolated from chicks and ducks. A total of 2,522 samples collected from 281 farms were examined from 2013 to 2014. The overall prevalence of Salmonella spp. was 21.7% (61/281) of farms and 83 isolates (3.3%) were isolated from 2,522 samples. Nine serotypes of Salmonella spp. were identified such as S. Typhimurium (19/83), S. Enteritidis (12/83), S. London (11/83), S. Senftenberg (8/83), S. Infantis (4/83), S. Montevideo (3/83), S. Hadar (3/83), S. Saintpaul (1/83), S. Rissen (1/83) and S. Arizonae (2/83). Nineteen isolates were found to be untypable serotypes. In the results of antimicrobial resistance test, all of isolates were resistant to at least two antimicrobial agent and the high resistance was found to nalidixic acid (66.3%), streptomycin (57.8%). All of isolates were susceptible to amoxacillin/clavulic acid, cefeprime, ampicillin, sulfamethoxazole/trimethoprim. This results indicated the serotypes of Salmonella isolates are widely distributed in chicks and ducks. Therefore further epidemiological studies should be carried out in breeder farm and a hatchery.

Production and Characteristics of Environment-Friendly Antimicrobial Substance by Pseudomonas aeruginosa EL-KM (Pseudomonas aeruginosa EL-KM에 의한 환경친화적 항균물질의 생산과 특성)

  • 이상준;이경민;이오미;차미선;박은희;박근태;손홍주
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • An antimicrobial substance-producing microorganism was isolated from soil samples. Based of the taxonomic characteristics of its morphological, cultural, physiological properties and 16s rRNA sequence alignment, this microorganism was identified as Pseudomonas aeruginosa, and we named Pseudomonas aeruginosa EL-KM. The optimal culture condition for production of antimicrobial substance was 1% mannitol, 0.4% yeast extract, 0.5% Nacl, 0.2% $K_2SO_4$, 100$\mu$M $MgSO_4$.$7H_2O$, 10$\mu$M $CaCl_2$.$2H_2O$, 1$\mu$M $FeSO_4$.$7H_2O$, 1$\mu$M $MnSO_4$.$4-5H_2O$, initial pH 7 and 200 rpm at 3$0^{\circ}C$. The purification of the antimicrbial substance was performed by silica gel column chromatographys, and fraction with TLC $R_f$ 0.77 value represented good antimicrobial activity. The crude antimicrbial substance was stable within a pH range of 3-10 and temperature range of 4$^{\circ}C$-121$^{\circ}C$ autoclaving. This crude antibacterial substance acted as bacteriolytic agent against Vibrio cholerae non-Ol ATCC 25872, and also exhibited excellent properties, when the substance was demonstrated against many other gram-positive, gram-negative bacteria, yeast and fungi.

Antimicrobial Effect of Furaneol Against Human Pathogenic Bacteria and Fungi

  • Sung Woo-Sang;Jung Hyun-Jun;Lee In-Seon;Kim Hyun-Soo;Lee Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.349-354
    • /
    • 2006
  • Furaneol, a key aroma compound found in strawberry, pineapple, and processed foodstuffs, has been known to possess various biological activities on animal models. In this study, the antimicrobial effects of furaneol against human pathogenic microorganisms were investigated. The results indicated that furaneol displayed a broad spectrum of antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi without hemolytic activity on human erythrocyte cells. To confirm the antifungal activity of furaneol, we examined the accumulation of intracellular trehalose as a stress response marker on toxic agents and its effect on dimorphic transition of Candida albicans. The results demonstrated that furaneol induced significant accumulation of intracellular trehalose and exerted its antifungal effect by disrupting serum-induced mycelial forms. These results suggest that furaneol could be a therapeutic agent having a broad spectrum of antimicrobial activity on human pathogenic microorganisms.

Preparation and Performance Analysis of Ophthalmic Polymer Using SWCNT and SWCCNT

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.735-740
    • /
    • 2019
  • The purpose of this study is to fabricate an ophthalmic lens by copolymerizing two types of carbon nanotubes and hydrophilic hydrogel lens materials, and to investigate its application as an ophthalmic lens material by analyzing its physical properties and antimicrobial effect. For polymerization, HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate), a crosslinking agent, and AIBN (azobisisobutyronitrile), an initiator, are used as a basic combination, and a single-walled carbon nanotube and a single-walled, carboxylic-acid-functionalized carbon nanotube are used as additives. To analyze the physical properties, the water content, refractive index, breaking strength, and antimicrobial effect of the fabricated lenses are measured. The fabricated lenses satisfies all the basic properties of the basic hydrogel ophthalmic lens. The water content increases with increasing amount of additive and decreases with addition of 0.2 % ratio of nanoparticles. The refractive index is inversely proportional to the water content result. As a result of the antimicrobial test of the fabricated lens, the addition of carbon nanotubes shows an excellent antimicrobial effect. Therefore, it is considered that the fabricated lens can be applied as a functional material for basic ophthalmic hydrogel lenses.

Antimicrobial Effects Against Food-borne Pathogens of Sanguisorbae Officinalis L. Ethanol Extract (지유 에탄올 추출물의 식품부패균에 대한 항균효과)

  • Choi, Moo Young;Rhim, Tae Jin
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • This study was performed to investigate the antimicrobial effect against food-borne pathogens of Sanguisorbae officinalis L. ethanol extract. The antimicrobial activity of the ethanol extract was determined using a paper disc-diffusion method and the diameter of the clear zone was measured. The diameters of the clear zone in the presence of 10 mg of the ethanol extract were the maximum against Staphylococcus aureus among the tested 4 gram-positive bacteria and Pseudomonas aeruginosa among the tested 7 gram-negative bacteria. Analysis of the minimum inhibition concentrations (MIC) showed that the ethanol extract exhibited a similar efficacy as sorbic acid, well-known chemical preservatives. The growth inhibitory effects of the ethanol extract in the concentrations of 250, 500, 1,000 and 2,000 mg/L on food-borne pathogens were determined against Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Pseudomonas aeruginosa. The growth of the microorganisms was significantly (p<0.05) inhibited by the ethanol extract in the concentrations higher than 250 mg/L. Thus, the results of the present study demonstrate that the ethanol extract exhibits antimicrobial effects against food-borne pathogens, suggesting that Sanguisorbae officinalis L. could be used as natural antibacterial agent in food.

Bacillus subtilis as a Tool for Screening Soil Metagenomic Libraries for Antimicrobial Activities

  • Biver, Sophie;Steels, Sebastien;Portetelle, Daniel;Vandenbol, Micheline
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.850-855
    • /
    • 2013
  • Finding new antimicrobial activities by functional metagenomics has been shown to depend on the heterologous host used to express the foreign DNA. Therefore, efforts are devoted to developing new tools for constructing metagenomic libraries in shuttle vectors replicatable in phylogenetically distinct hosts. Here we evaluated the use of the Escherichia coli-Bacillus subtilis shuttle vector pHT01 to construct a forest-soil metagenomic library. This library was screened in both hosts for antimicrobial activities against four opportunistic bacteria: Proteus vulgaris, Bacillus cereus, Staphylococcus epidermidis, and Micrococcus luteus. A new antibacterial activity against B. cereus was found upon screening in B. subtilis. The new antimicrobial agent, sensitive to proteinase K, was not active when the corresponding DNA fragment was expressed in E. coli. Our results validate the use of pHT01 as a shuttle vector and B. subtilis as a host to isolate new activities by functional metagenomics.

Antimicrobial Peptides from Lactobacillus plantarum UTNGt2 Prevent Harmful Bacteria Growth on Fresh Tomatoes

  • Tenea, Gabriela N.;Pozo, Tatiana Delgado
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1553-1560
    • /
    • 2019
  • In a previous study, the antimicrobial peptides extracted from Lactobacillus plantarum UTNGt2 of wild-type fruits of Theobroma grandiflorum (Amazon) were characterized. This study aimed to investigate the antimicrobial mechanisms of peptides in vitro and its protective effect on fresh tomatoes. The addition of partially purified Gt2 peptides to the E. coli suspension cells at the exponential ($OD_{605}=0.7$) growth phase resulted in a decrease with 1.67 (log10) order of magnitude compared to the control without peptide. A marginal event (< 1 log10 difference) was recorded against Salmonella, while no effect was observed when combined with EDTA, suggesting that the presence of a chelating agent interfered with the antimicrobial activity. The Gt2 peptides disrupted the membrane of E. coli, causing the release of ${\beta}$-galactosidase and leakage of DNA/RNA molecules followed by cell death, revealing a bacteriolytic mode of action. The tomatoes fruits coated with Gt2 peptides showed growth inhibition of the artificially inoculated Salmonella cocktail, demonstrating their preservative potential.

Antibacterial activity of Chamaecyparis obtuse extract and Profile of Antimicrobial Agents Resistance for Metallo-β-lactamase-Producing Pseudomonas aeruginosa

  • Jonghwa Yum
    • Biomedical Science Letters
    • /
    • v.30 no.2
    • /
    • pp.96-99
    • /
    • 2024
  • In vitro antimicrobial activities of hot water extracts of Chamaecyparis obtuse, for clinical metallo-β-lactamase-Producing Pseudomonas aeruginosa (MBLPA.) was compared to commonly used conventional antimicrobial agents. All MBLPA was susceptible to colistin or amikacin, but also to imipenem 88.6%, meropenem 100%, piperacillin 85.7%, ceftazidime 97.1%, gentamicin 97.1%, and ciprofloxacin 100% were non-susceptible. MIC range to imipenem, meropenem, cefotaxime, ceftazidime, gentamicin, and ciprofloxacin for MBLPA were each 1 - >128 ㎍/mL, 4 - >128 ㎍/mL, 4 - >128 ㎍/mL, 8 - >128 ㎍/mL, 4 - >128, and 2- >128 ㎍/mL. MIC range to aztreonam for MBLPA were 1 - 128 ㎍/mL. MIC90 to imipenem, meropenem, cefotaxime, ceftazidime, gentamicin, and ciprofloxacin for MBLPA were each 32 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, and 128 ㎍/mL. MIC90 to colistin and amikacin were each 1 ㎍/mL and 64 ㎍/mL. The hot water extracts of C. obtuse leaf had the lowest MIC range (0.25 - >0.5 μL/mL), MIC50 (>0.5 μL/mL), and MIC90 (>0.5 μL/mL) of the clinical MBLPA tested, and it was possible more potent than various conventional antimicrobial agents for MBLPA infection patients. Therefore, it suggested the possibility of using extract components of C. obtuse or their derivatives to treat MBLPA infection patients.

Cytotoxicity and antimicrobial effects of the methanolic extract of Sophora flavescens Ait. (IV)

  • Baek, Seung-Hwa;Kang, Kil-Ung;Lee, Jeong-Ho;Park, Nang-Kyu;Chai, Kyu-Yun;You, Il-Soo;Kim, Jong-Soo;Ryu, Do-Gon;Lee, Kang-Min;Yang, Eun-Yeong;Lee, Hyun-Ok
    • Advances in Traditional Medicine
    • /
    • v.1 no.2
    • /
    • pp.45-51
    • /
    • 2000
  • This study was carried out to evaluate cytotoxicity of the methanol extract from Sophora flavescens Ait. against L1210 (lymphocytic leukemia) and $P388D_1$ (lymphoid neoplasma) Cells in vitro. We have determined cytotoxicity by the MTT (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H- tetrazolium bromide) assay. The order of cytotoxicity of Sophora flavescens Ait. extracts against L1210 and $P388D_1$ cells in vitro is as follows: Fr. 4 > Fr. 3 > Fr. 5 > Fr. 2 > Fr. 1. These results suggest that the fraction 4 of the methanol extracts from Sophora flavescens Ait. may be a valuable choice for the development of antitumor agents. In order to develop an antimicrobial agent, dried Sophora flavescens Ait. was extracted with hot methanol, and then antimicrobial activity (MIC test) was investigated. In this study, the fraction 3 of the methanol extracts from the roots of S. flavescens showed strong growth inhibition activity against gram-positive and gram-negative bacteria (MIC, $3.125\;{\mu}g/ml$) such as S. mutans, S. epidermidis and P. putida. These results indicate that fractions 3 and 4 inhibit tumor cells and bacteria.

  • PDF

Effect of the Antimicrobial Peptide $\small{D}$-Nal-Pac-525 on the Growth of Streptococcus mutans and Its Biofilm Formation

  • Li, Huajun;Cheng, Jya-Wei;Yu, Hui-Yuan;Xin, Yi;Tang, Li;Ma, Yufang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1070-1075
    • /
    • 2013
  • Streptococcus mutans is the primary etiological agent of dental caries. The antimicrobial peptide $\small{D}$-Nal-Pac-525 was designed by replacing the tryptophans of the Trp-rich peptide Pac-525 with $\small{D}$-${\beta}$-naphthyalanines. To assess the effect of $\small{D}$-Nal-Pac-525 on cariogenic bacteria, the activity of $\small{D}$-Nal-Pac-525 on the growth of S. mutans and its biofilm formation were examined. $\small{D}$-Nal-Pac-525 showed robust antimicrobial activity against S. mutans (minimum inhibitory concentration of 4 ${\mu}g/ml$). Using scanning electron microscopy and transmission electron microscopy, it was shown that $\small{D}$-Nal-Pac-525 caused morphological changes and damaged the cell membrane of S. mutans. $\small{D}$-Nal-Pac-525 inhibited biofilm formation of S. mutans at 2 ${\mu}g/ml$. The results of this study suggest that $\small{D}$-Nal-Pac-525 has great potential for clinical application as a dental caries-preventing agent.