• Title/Summary/Keyword: Antimicrobial Specificity

Search Result 22, Processing Time 0.021 seconds

Evaluatioon of EEc 4-Plate Test for the Sensitivity and Identification of Families of Antimicrobial Drugs in Mea (EEC 4-Plate Test의 식육중 항균물질 검출감도와 항균물질 계열별 검출능 비교 조사)

  • 조병훈;진남섭;손성완;강환구;이혜숙;김재학;김봉환
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.4
    • /
    • pp.307-314
    • /
    • 1996
  • The European Economic Community four plate test(EEC 4-plate test, FPT, EU) has been used for monitoring antimicrobial drug residues in meat by Local Veterinary Service Center in Korea. This study was performed to evaluate sensitivity and group specificity of some antimicrobial drugs in FPT and to compare FPT with Charm II test. The minimal detectable levels of targeted antimicrobial drugs tested with standard solutions were 0.025∼1.0 ppm for 7 beta-lactams, 0.5∼1.0 ppm for 4 aminoglycosides, 0.05∼0.5 ppm for 5 macrolides, 0.05∼0.25 ppm for 3 tetracyclines and 0.25&1.0 ppm for 6 sulfonamides. In comparison of FPT and Charm II test, the results of FPT were not accord with those of Charm II test having the group specificity of seven families of antimicrobial drugs in meat samples except some families like tetracyclines.

  • PDF

Studies of the Physiological Activity of Korean Ginseng (Part 3) The effects of Ginseng Saponin on the Antimicrobial Activity and Drug-resistance of Antibiotics in Bacteria (인삼의 생리활성에 관한 연구 (제 3 보)항생물질의 항균활성과 약제내성에 대한 인삼 Saponin의 영향)

  • 전홍기;김선희
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.3
    • /
    • pp.171-175
    • /
    • 1982
  • An oxytetracycline as being a tetracycline-antibiotic substance displayed a general synergism in the antimicrobial activity by the interaction of ginseng saponin and antibiotics, but did not to Sarcina maginata. Penicillin G.Na as being a $\beta$-lactam-antibiotic substance displayed a synergism in the antimicrobial activities by the addition of ginseng saponin to microorganisms used, but changed the effects in the antimicrobial activity of penicillin G.Na against the genus Serratia. An antimicrobial activity by the addition of ginseng saponin to antibiotics showed a non-specificity, and it varied synergism or antagonism to Gram-positive or Gram-negative bacterium. It was assumed that a drug-resistance could be eliminated by the dual administration of ginseng saponin and antibiotics.

  • PDF

Investigation of Pathogenic Microbial Contamination in Medicinal Herb Products on the Market (유통 한약재에 대한 병원성미생물 분포)

  • Ham, Hee Jin;Yu, In Sil;Lee, Jib Ho;Kim, Su Jin;Yu, Young Ah;Lee, En Sun;Kim, Hee Sun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • Background: The study was conducted to investigate the distributions of faecal bacteria in commercial oriental medicine herb products. Methods and Results: A survey was conducted on the microbial contamination levels and antimicrobial specificity of Bacillus cereus and other microbes using 106 oriental medicine herb products on sale in Seoul. Pouring and isolation methods such as standard plate counts were used to identify the bacteria. The isolated bacterias included coliforms, Bacillus spp., Enterococcus spp., Staphylococcus spp., Listeria spp.were identified by using gram staining and an API (analytical profile index) kit. Antimicrobial drugs discs were determined by CLSI (clinical and laboratory standards institute). Conclusions: The bacterial isolates present in the herbal medicines included 98 coliforms, 45 Bacillus spp., 29 Enterococcus spp., and 2 Listeria spp. Among these, there were nine Bacillus cereus strains, one Enterococcus faecium strain, and one Enterococcus faecalis strain present. The 9 Bacillus cereus strains were tested for susceptibility to 36 types of antibiotics products by the disc diffusion method. The strains showed resistance to 13 of these antibiotic products and semi-resistance to 5 antibiotic products. On the basis of these results, any oriental medicine herb product can be assumed to be contain resistant or semi-resistant bacterial strains. Therefore, we suggest prescribing guidelines and special management for the use of antibiotics in farms producing oriental medicine herb products.

Overview of Innate Immunity in Drosophila

  • Kim, Tae-Il;Kim, Young-Joon
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2005
  • Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.

Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides

  • Mattiuzzo, Maura;Gobba, Cristian De;Runti, Giulia;Mardirossian, Mario;Bandiera, Antonella;Gennaro, Renato;Scocchi, Marco
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.160-167
    • /
    • 2014
  • Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that has emerged as a virulence factor despite its function has not yet been precisely established. By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed peptidase makes the bacterial cells specifically less susceptible to several proline-rich antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of activity directly correlates with the degree of resistance. We established that E. coli OpdB can efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even though they contained several prolines, shortening them to inactive fragments. Two consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single basic residue, there is no cleavage if proline residues are present in the $P_1$ and $P_2$ positions. These results also indicate that cytosolic peptidases may cause resistance to antimicrobial peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and may contribute to define the substrate specificity of the E. coli OpdB.

Synthesis and Characterization of GGN4 and its Tryptophan Substituted Analogue Peptides

  • Kim, Se-Ha;Kim, Ji-Young;Lee, Byeong-Jae;Kim, Soon-Jong
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 1999
  • Gaegurin 4 (GGN4), a broad-spectrum antibiotic, is a 37-amino acid peptide isolated from the Korean frog, Rana rugosa. In this study, we have chemically synthesized and purified GGN4 analogues where the C-terminal portion is truncated and/or substituted with tryptophan. These peptides show significantly different biological activities depending on the location of tryptophan and the number of amino acids truncated from the C-terminal end. While deletion of 9 amino acids from the C-terminal seems to be marginally tolerable in maintaining the antimicrobial activity, further deletion of up to 14 amino acid residues decreases the potency by more than 60-fold towards Gram-positive, and 10-fold towards Gram-negative, bacteria. Surprisingly, the reduced activity of the shorter peptide can be completely restored by a single substitution of aspartic acid 16 to tryptophan 16 (D16W). Also, the truncation seems to decrease the specificity of antibiotic activity more towards Gram-positive than towards Gram-negative bacteria studied. These data suggest a partial role of the C-terminal region in determining the binding specificity and the activity of peptides upon binding to their target cell membranes.

  • PDF

Antimicrobial Activities of Sesquiterpene Lactones Isolated from Hemisteptia lyrata, Chrysanthemum zawadskii and Chrysanthemum boreale (지칭개, 구절초 및 산국에서 분리한 Sesquiterpene lactones의 항균활성)

  • Jang, Dae-Sik;Park, Ki-Hun;Lee, Jong-Rok;Ha, Tae-Joung;Park, Yun-Bae;Nam, Sang-Hae;Yang, Min-Suk
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.176-179
    • /
    • 1999
  • In the bioactivity test of nine sesquiterpene lactons isolated from Hemisteptia lyrata, Chrysanthemum zawadskii and Chrysanthemum boreale, we investigated their antimicrobial activities against ten bacteria and six phytopathogenic fungi. Hemistepsin A and hemistepsin B isolated from H. lyrata and tulipinolide isolated from C. boreale exhibited strong antibacterial activity. In the antifungal test, hemistepsin B, angeloylcumambrin B, tigloylcumambrin B and costunolide showed broad activity. Both antibacterial and antifungal experiments exhibited quite clear specificity against microbial strains.

  • PDF

Application of Loop-Mediated Isothermal Amplification (LAMP) Assay to Rapid Detection of Methicillin-Resistant Staphylococcus aureus from Blood Cultures

  • Baek, Yun-Hee;Jo, Mi-Young;Song, Min-Suk;Hong, Seung-Bok;Shin, Kyeong-Seob
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • We developed the multiplex LAMP assay using 16S rRNA, femA and mecA genes for direct detection of the methicillin resistance in Staphylococci from positive blood culture. To simultaneously recognize Staphylococci genus, S. aureus and methicillin resistance, three sets of six primers for 16S rRNA, femA and mecA were designed, respectively. The performance of LAMP assay was affirmed using VITEK system for the phenotypic methods of identification and for oxacillin and cefoxitin antimicrobial susceptibility. The optimal condition for LAMP assay was obtained under $64^{\circ}C$ for 50 min. The detection limit was determined to be of 20 copies and CFU/reaction ($10^4CFU/mL$). For clinical application of comparison with phenotypic methods, the sensitivity and specificity of the LAMP with femA gene for detecting S. aureus was 95.31% and 100%, respectively. The sensitivity and specificity of the LAMP with mecA gene for detecting methicillin resistance was 98.46% and 100%, respectively. The multiplex LAMP assay with femA and mecA gene successfully detected all of MRSA (38 isolates) isolates from 103 Staphylococci in blood cultures. The LAMP assay developed in this study is sensitive, specific, and of excellent agreement with the phenotypic methods.

Prebiotic Potential of Xylooligosaccharides Derived from Corn Cobs and Their In Vitro Antioxidant Activity When Combined with Lactobacillus

  • Yu, Xiuhua;Yin, Jianyuan;Li, Lin;Luan, Chang;Zhang, Jian;Zhao, Chunfang;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1084-1092
    • /
    • 2015
  • In the present work, the in vitro prebiotic activity of xylooligosaccharides (XOS) derived from corn cobs combined with Lactobacillus plantarum, a probiotic microorganism, was determined. These probiotics exhibited different growth characteristics depending on strain specificity. L. plantarum S2 cells were denser and their growth rates were higher when cultured on XOS. Acetate was found to be the major short-chain fatty acid produced as the end-product of fermentation, and its amount varied from 1.50 to 1.78 mg/ml. The antimicrobial activity of XOS combined with L. plantarum S2 was determined against gastrointestinal pathogens. The results showed that XOS proved to be an effective substrate, enhancing antimicrobial activity for L. plantarum S2. In vivo evaluation of the influence of XOS and L. plantarum S2, used both alone and together, on the intestinal microbiota in a mouse model showed that XOS combined with L. plantarum S2 could increase the viable lactobacilli and bifidobacteria in mice feces and decrease the viable Enterococcus, Enterobacter, and Clostridia spp. Furthermore, in the in vitro antioxidant assay, XOS combined with L. plantarum S2 possessed significant 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis, and superoxide anion radical-scavenging activities, and the combinations showed better antioxidant activity than either XOS or L. plantarum S2 alone.

Draft genome sequence of lytic bacteriophage KP1 infecting bacterial pathogen Klebsiella pneumoniae (병원균 Klebsiella pneumoniae를 감염시키는 용균 박테리오파지 KP1의 유전체 염기서열 초안)

  • Kim, Youngju;Bang, Ina;Yeon, Young Eun;Park, Joon Young;Han, Beom Ku;Kim, Hyunil;Kim, Donghyuk
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.152-154
    • /
    • 2018
  • Klebsiella pneumoniae is a Gram-negative, rod-shape bacterium causing disease in human and animal lungs. K. pneumoniae has been often found to gain antimicrobial resistance, thus it has been difficult to treat K. pneumoniae infection with antibiotics. For such infection, bacteriophage can provide an alternative approach for pathogenic bacterial infection with antimicrobial resistance, because of its sensitivity and specificity to the host bacteria. Bacteriophage KP1 was isolated in sewage and showed specific infectivity to K. pneumoniae. Here, we report the draft genome sequence of Klebsiella pneumoniae phage KP1. The draft genome of KP1 is 167,989 bp long, and the G + C content is 39.6%. The genome has 295 predicted ORFs and 14 tRNA genes. In addition, it encodes various enzymes which involve in lysis of the host cell such as lysozyme and holin.