• Title/Summary/Keyword: Antihypertensive ACE inhibitory activity

Search Result 71, Processing Time 0.032 seconds

Screening New Antihypertensive Angiotensin I-Converting Enzyme Inhibitor -Producing Yeast and Optimization of Production Condition (항고혈압성 안지오텐신 전환효소 저해제를 생산하는 새로운 효모의 선별 및 저해물질 최적 생산조건)

  • Kang, Min-Gu;Kim, Ha-Kun;Yi, Sung-Hun;Lim, Sung-Il;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.194-197
    • /
    • 2011
  • Forty eight strains of yeast were cultured in potato dextorse(PD) broth at $30^{\circ}C$ for 24 hr and centrifuged with 12,000 rpm for 20 min. After concentrated the cultures, antihypertensive angiotensin I-converting enzyme(ACE) inhibitory activities of its concentrates were investigated. Among them, the concentrates from Saccharomyces cerevisiae Y183-3 showed the highest ACE inhibitory activity of 71.8%. The ACE inhibitor from Saccharomyces cerevisiae Y183-3 was maximally produced when Saccharomyces cerevisiae Y183-3 cultured in PD broth at $30^{\circ}C$ for 36 hr.

Purification of Angiotensin I-Converting Enzyme Inhibitory Peptide from Squid Todarodes pacificus Skin (오징어(Todarodes pacificus) 껍질로부터 Angiotensin I 전환효소 저해 펩티드의 분리 정제)

  • Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.118-125
    • /
    • 2011
  • In this study, an angiotensin I-converting enzyme (ACE) inhibitor from squid skin was purified and characterized. Squid (Todarodes pacificus) skin protein isolates were hydrolyzed using six commercial proteases: alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin. The peptic hydrolysate had the highest ACE inhibitory activity. The ACE inhibitory peptide was purified using Sephadex G-25 column chromatography and reverse phase high-performance liquid chromatography (HPLC) with a $C_{18}$ column. The purified ACE inhibitory peptide was identified and sequenced, and found to consist of seven amino acid residues: Ser-Ala-Gly-Ser-Leu-Val-Pro (657Da). The $IC_{50}$ value of the purified ACE inhibitory peptide was 766.2 ${\mu}M$, and Lineweaver-Burk plots suggested that the purified peptide acts as a noncompetitive ACE inhibitor. These results suggest that the ACE inhibitory peptide purified from the peptic hydrolysate of squid skin may be of benefit in developing antihypertensive drugs and functional foods.

Antioxidant and Antidiabetic Activities of Eucommia ulmoides Bark

  • Qu, Guan-Zheng;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.82-85
    • /
    • 2006
  • Eucommia ulmoides bark extracts by cold water, boiling water, 100% EtOH, 70% EtOH, 100% MeOH, 70% MeOH and $CHCl_3$ were assayed for their medicinal effects. The antioxidant activity of the extracts ranged from $IC_{50}$ 125.2 to $IC_{50}\;872.7{\mu}g/ml$ in the 1,1-diphenyl-2-picrylhydrazyl (DDPH) free radical-scavenging assay, and cold water extracts had the highest antioxidant activity. $CHCl_3$ extracts had the highest inhibitory effect on angiotensin I-converting enzyme (ACE) giving inhibition of up to 56.4% at a concentration of 1 mg/ml. Extracts in 100% EtOH had the greatest inhibitory effect on $\acute{a}-amylase$ activity ($IC_{50}=174.6{\mu}g/ml$), and 70% MeOH extracts had the greatest inhibitory effect on ${\alpha}-glucosidase$ activity ($IC_{50}=14.0{\mu}g/ml$). Taken together, these results provided the in vitro evidence on the ACE, amylase and glucosidase inhibitory actions of E. ulmoides bark that form the pharmacological basis for its antihypertensive and antidiabetic action.

Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563

  • Ha, Go Eun;Chang, Oun Ki;Jo, Su-Mi;Han, Gi-Sung;Park, Beom-Young;Ham, Jun-Sang;Jeong, Seok-Geun
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.738-747
    • /
    • 2015
  • Angiotensin-converting enzyme (ACE) inhibitory activity was evaluated for the low-molecular-weight fraction (<3 kDa) obtained from milk fermentation by Bifidobacterium longum KACC91563. The ACE inhibitory activity in this fraction was 62.3%. The peptides generated from the <3 kDa fraction were identified by liquid chromatography-electrospray ionization quantitative time-of-flight mass spectrometry analysis. Of the 28 peptides identified, 11 and 16 were identified as β-casein (CN) and αs1-CN, respectively. One peptide was identified as κ-CN. Three peptides, YQEPVLGPVRGPFPIIV, QEPVLGPVRGPFPIIV, and GPVRGPFPIIV, from β-CN corresponded to known antihypertensive peptides. We also found 15 peptides that were identified as potential antihypertensive peptides because they included a known antihypertensive peptide fragment. These peptides were as follows: RELEELNVPGEIVE (f1-14), YQEPVLGPVRGPFP (f193-206), EPVLGPVRGPFPIIV (f195-206), PVLGPVRGPFPIIV (f196-206), VLGPVRGPFPIIV (f197-206), and LGPVRGPFPIIV (f198-206) for β-CN; and APSFSDIPNPIGSENSEKTTMPLW (f176-199), SFSDIPNPIGSENSEKT- TMPLW (f178-199), FSDIPNPIGSENSEKTTMPLW (f179-199), SDIPNPIGSENSEKTTMPLW (f180-199), DIPNPIGSENSEKTTMPLW (f181-199), IPNPIGSENSEKTTMPLW (f182-199), PIGSENSEKTTMPLW (f185-199), IGSENSEKTTMPLW (f186-199), and SENSEKTTMPLW (f188-199) for αs1-CN. From these results, B. longum could be used as a starter culture in combination with other lactic acid bacteria in the dairy industry, and/or these peptides could be used in functional food manufacturing as additives for the development of a product with beneficial effects for human health.

Physiological Functionalities of Vitis hybrid (Sheridan)-Rubus coreanus Red Wine Made by Saccharomyces cerevisiae

  • Jang, Jeong-Hoon;Kim, Jae-Ho;Ahn, Byung-Hak;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.109-112
    • /
    • 2011
  • Vitis hybrid (Sheridan)-Robus coreanus red wine was vinified by fermentation of a mixture of Vitis hybrid and Robus coreanus must at $25^{\circ}C$ for 10 days. The Vitis hybrid-Robus coreanus red wine had ethanol contents of 10.9%. It had high antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity of 57.8% and antioxidant activity of 64.8%. Changes in the physicochemical properties and functionality of the Vitis hybrid-Robus coreanus red wine was investigated during a post-fermentation period of three months. The ACE inhibitory activity of the red wine increased as the post-fermentation period prolonged, and showed the highest ACE inhibitory activity of 70.4% 60 days post-fermentation. However, the antioxidant activity declined significantly to 47.2% during the post-fermentation period of 60 days. In terms of sensory evaluation, the Vitis hybrid-Robus coreanus red wine had the best acceptability 60 days post-fermentation.

Effect of Indian Millet Koji and Legumes on the Quality and Angiotensin I-Converting Enzyme Inhibitory Activity of Korean Traditional Rice Wine (수수 입국과 두류 첨가가 전통주의 품질과 엔지오텐신전환효소 저해활성에 미치는 영향)

  • Kim, Jae-Ho;Jeong, Seung-Chan;Kim, Na-Mi;Lee, Jong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.733-737
    • /
    • 2003
  • To develop a high-valuable Korean traditional rice wine having antihypertension, effects of some cereal kojis and legumes on alcohol fermentation and angiotensin I-converting enzyme (ACE) inhibitory activity of Korean traditional rice wine were investigated. Korean traditional rice wine brewed by addition of 10% Indian-millet koji into the mash showed the greatest ACE inhibitory activity of 43.0% and good ethanol productivity. The ACE inhibitory activity increased up to 69.2% by addition of 50% of mungbean powder and 1% of dandelion petal into the mash.

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

Expression and Purification of an ACE-Inhibitory Peptide Multimer from Synthetic DNA in Escherichia coli

  • OH, KWANG-SEOK;YONG-SUNG PARK;HA-CHIN SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • An angiotensin I-converting enzyme (EC 3.4.15.1) (ACE), which can convert inactive angiotensin I into angiotensin II, a vasoconstrictor, is one of the key enzymes in controlling hypertension. It is suggested that the inhibition of ACE prevents hypertension, and many inhibitory peptides have already been reported. In the current study, oligonucleotides encoding ACE inhibitory peptides (IY, VKY) were chemically synthesized and designed to be multimerised due to isoschizomer sites (BamHI, BglII). The cloned gene named AP3 was multimerised up to 6 times in pBluescript and expressed in BL2l containing pGEX-KG. The fusion protein (GST-AP3) was easily purified with a high recovery by an affinity resin, yielding 38 mg of synthetic AP3 from a 1-1 culture. The digestion of AP3 by chymotrypsin exhibited an $IC_50$ value of $18.53{\mu}M$. In conclusion, the present experiment indicated that AP3 could be used as a dietary antihypertensive drug, since the potent ACE inhibitory activity of AP3 could be activated by chymotrypsin in human intestine.

Changes of Angiotensin I-Converting Enzyme Inhibitory Activity, Fibrinolytic Activity and $\beta$-Secretase Inhibitory Activity of Red Wines During Fermentation and Post-Fermentation (적포도주들의 발효와 후 발효 중 심혈관 관련 Angiotensin I 전환효소 저해활성과 혈전용해활성 및 $\beta$-secretase 저해 활성의 변화)

  • No, Jae-Duck;Lee, Eun-Na;Seo, Dong-Soo;Chun, Jong-Pil;Choi, Shin-Yang;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.291-298
    • /
    • 2008
  • The cardiovascular angiotensin I-converting enzyme inhibitory activity, fibrinolytic activity and bbb-secretase inhibitory activity of four kinds of red wine were investigated during fermentation and post-fermentation. After 10 days of fermentation, the antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activities of all the red wines ranged from 38.6% to 58.8%. However, the ACE inhibitory activities increased with the prolongation of the post-fermentation period; moreover, in the Vitis hybrid red wine, the ACE inhibitory activity reached its highest value, 76.9%, after 120 days of post-fermentation. During the fermentation and post-fermentation of all the red wines, fibrinolytic activity was weak or not detected. After 10 days of fermentation, Vitis labrusca B red wine exhibited the greatest antidementia $\beta$-secretase inhibitory activity of 54.8%, though $\beta$-secretase inhibitory activity decreased significantly to less than 10% during 120 days of post-fermentation. In conclusion, we obtained a highly valuable Vitis hybrid red wine that was fermented for 10 days at $25^{\circ}C$ with Vitis hybrid and S. cerevisiae K-7 and then post-fermentation for 120 days at $4^{\circ}C$.

Analysis of Nutritional Characteristics and Physiological Functionality of Hypsizygus marmoreus (Brown cultivar) (갈색 느티만가닥버섯의 영양특성 및 생리기능성 분석)

  • Bolormaa, Zanabaatar;Kang, Min-Gu;Seo, Geon-Sik;Lee, Young-Wook;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.104-108
    • /
    • 2012
  • In order to apply into functional food or medicinal industry, nutritional characteristics and physiological functionality of Hypsizygus marmoreus (brown cultivar) were investigated. Fruiting body of H. marmoreus contained 27.3% of crude protein, 55.8% of total sugar and 11,109.3 mg/100 g dry weight of malic acid. Furthermore, 66.7% of antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity and 37.3% of antigout xanthin oxidase inhibitory activity showed in the water extract from H. marmoreus. The economically ACE inhibitory activity (81.4%) was obtained when the fruiting body of Hysizygus marmoreus was extracted with distilled water of $50^{\circ}C$ for 12 h, even though maximal ACE inhibitory activity (84.4%) was showed the extracts from $70^{\circ}C$ for 12 h.