• Title/Summary/Keyword: Antihemophilic factor IX

Search Result 3, Processing Time 0.02 seconds

Enhanced Virus Safety of a Solvent/Detergent-Treated Anti-hemophilic Factor IX Concentrate by Dry-Heat Treatment

  • Shin Jeong-Sup;Choi Yong-Woon;Sung Hark-Mo;Ryu Yeon-Woo;Kim In-Seop
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 2006
  • With particular regards to the hepatitis A virus (HAV), a terminal dry-heat treatment ($100^{\circ}C$ for 30 min) process, following lyophilization, was developed to improve the virus safety of a solvent/detergent-treated antihemophilic factor IX concentrate. The loss of factor IX activity during dry-heat treatment was of about 3%, as estimated by a clotting assay. No substantial changes were observed in the physical and biochemical characteristics of the dry-heat-treated factor IX compared with those of the factor IX before dry-heat treatment. The dry-heat-treated factor IX was stable for up to 24 months at $4^{\circ}C$, The dry-heat treatment after lyophilization was an effective process for inactivating viruses. The HAV and murine encephalomyocarditis virus (EMCV) were completely inactivated to below detectable levels within 10 min of the dry-heat treatment. Porcine parvovirus (PPV) and bovine herpes virus (BHV) were potentially sensitive to the treatment. The log reduction factors achieved during lyophilization and dry-heat treatment were ${\ge}5.60$ for HAV, ${\ge}6.08$ for EMCV, 2.64 for PPV, and 3.59 for BHV. These results indicate that dry-heat treatment improves the virus safety of factor IX concentrates, without destroying the activity. Moreover, the treatment represents an effective measure for the inactivation of non-lipid enveloped viruses, in particular HAV, which is resistant to solvent/detergent treatment.

Industrial-Scale Production of High-Purity Antihemophilic Factor IX from Human Plasma (사람 혈장으로부터 고순도 혈액응고 제9인자의 산업적 생산)

  • Kang, Yong;Choi, Yong-Woon;Sung, Hark-Mo;Sohn, Ki-Whan;Shin, Jeong-Sup;Kim, In-Seop
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • The use of antihemophilic factor IX complex has been associated with a variety of thrombotic complications, the major cause of which was the contamination of thrombogenic proteins such as vitamin K-dependent clotting factors II, VII, and X. In order to produce a commercial factor IX (GreenNine VF) free from thrombogenic potential, industrial-scale production process for high-purity factor IX from human plasma has been developed. The purification process contains cryo-precipitation, DEAE-sephadex A-50 anion-exchange chromatography, DEAE-toyopearl 650M anion-exchange column chromatography, heparin-sepharose 6FF affinity column chromatography, and CM-sepharose FF cation-exchange column chromatography. Also the process includes two viral inactivation and removal procedures, solvent/detergent treatment and nanofiltration using Viresolve NFP filter. The purification yield was 35.4%. The specific activity in the purified concentrate was 190.8 IU/mg which exceeded that in the factor IX complex (FacNine) by a factor of 48. The activities of factor II, VII, and X were not detected in GreenNine VF. SDS-PAGE analysis showed that GreenNine VF had the highest purity in comparison with commercially available high purity factor IX concentrates, Mononine, Octanyne, Berinin HS, and Immunine STIM plus 600. One batch size of the production was 2,400 vials of 250 IU product or 1,200 vials of 500 IU product from 1,600 L cryo-poor plasma.

Improvement of Virus Safety of an Antihemophilc Factor IX by Virus Filtration Process

  • Kim, In-Seop;Choi, Yong-Woon;Kang, Yong;Sung, Hark-Mo;Sohn, Ki-Whan;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1317-1325
    • /
    • 2008
  • Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, a virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized production-scale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$6.12 for HAV, $\geq$4.28 for PPV, $\geq$5.33 for EMCV, $\geq$5.51 for HIV, $\geq$5.17 for BVDV, and $\geq$5.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.