• 제목/요약/키워드: Antigen delivery

검색결과 66건 처리시간 0.028초

Transcutaneous antigen delivery system

  • Lee, Mi-Young;Shin, Meong-Cheol;Yang, Victor C.
    • BMB Reports
    • /
    • 제46권1호
    • /
    • pp.17-24
    • /
    • 2013
  • Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy.

Antigen Delivery Systems: Past, Present, and Future

  • Hyun-Jeong Ko;Yeon-Jeong Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.370-387
    • /
    • 2023
  • The COVID-19 pandemic has increased demand for safe and effective vaccines. Research to develop vaccines against diseases including Middle East respiratory syndrome, Ebolavirus, human immunodeficiency virus, and various cancers would also contribute to global well-being. For successful vaccine development, the advancement of technologies such as antigen (Ag) screening, Ag delivery systems and adjuvants, and manufacturing processes is essential. Ag delivery systems are required not only to deliver a sufficient amount of Ag for vaccination, but also to enhance immune response. In addition, Ag types and their delivery systems determine the manufacturing processes of the vaccine product. Here, we analyze the characteristics of various Ag delivery systems: plasmids, viral vectors, bacterial vectors, nanoparticles, self-assembled particles, natural and artificial cells, and extracellular vesicles. This review provides insight into the current vaccine landscape and highlights promising avenues of research for the development and improvement of Ag delivery systems.

Virus-like Particle (VLP) Mediated Antigen Delivery as a Sensitization Tool of Experimental Allergy Mouse Models

  • Juhyung Kim;Jeein Oh;Chon-Sik Kang;Youn Soo Choi
    • IMMUNE NETWORK
    • /
    • 제20권4호
    • /
    • pp.35.1-35.13
    • /
    • 2020
  • Antigen delivery systems play critical roles in determining the quality and quantity of Ab responses in vivo. Induction of protective antibodies by B cells is essential in the development of vaccines against infectious pathogens, whereas production of IgE antibodies is prerequisite for investigation of allergic responses, or type 1 hypersensitivity reactions. Virus-like particles (VLPs) are efficient platforms for expression of proteins of interest in highly repetitive manners, which grants strong Ab responses to target antigens. Here, we report that delivery of hen egg lysozyme (HEL), a model allergen, through VLP could provoke strong HEL specific IgE Ab responses in mice. Moreover, acute allergic responses were robustly induced in the mice sensitized with VLPs that express HEL, when challenged with recombinant HEL protein. Our data show that antigen delivery in the context of VLPs could function as a platform for sensitization of mice and for subsequent examination of allergic reactions to molecules of interest.

Enhanced mucosal and systemic immune responses by mucosally administered hepatitis B surface antigen: effects of vaccine delivery vehicles and adjuvants

  • Park, Jeong-Sook;Kim, Chong-Kook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.121-121
    • /
    • 2003
  • The purpose of this study is to investigate the effect of mucosal vaccine delivery vehicles and adjuvants on the local and systemic antibody responses following mucosal immunization of mice with hepatitis B surface antigen (HBsAg). Mice were immunized on days 0 and 21 by administration of hepatitis B surface antigen B (HBsAg) into the vagina. HBsAg was delivered in saline or poloxamer(Pol)-based vehicle containing mucoadhesive polycarbophil (PC). (omitted)

  • PDF

Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis

  • Roeske, Katarzyna;Stachowiak, Radoslaw;Jagielski, Tomasz;Kaminski, Michal;Bielecki, Jacek
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.122-135
    • /
    • 2018
  • Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous antigens to the host cell cytosol and lead to their processing predominantly through the cytosolic MHC class I presentation pathway. The aim of this project was to characterize the delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of $CD8^+$ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a vaccine vector.

PLGA 미립구를 이용한 새로운 단회 접종 항원 전달 시스템의 개발 (Improved Antigen Delivery Systems with PLGA Microsphere for a Single-Step Immunization)

  • 윤미경;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권1호
    • /
    • pp.1-14
    • /
    • 2004
  • A promising approach to the development of a new single-step vaccine, which would eliminate the requirement for multiple injections, involves the encapsulation of antigens into microspheres. Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres gave us a bright insight for controling antigen release in a pulsatile fashion, thereby mimicking two or tree boosting injections. However, in spite of the above merits, the level of immunization induced by a single-shot vaccination is often lower tan two doses of alum-adsorbed antigen. Therefore, optima modification of the microsphere is essential for the development of single-step vaccines. In the review, we discuss the stability of antigen in microsphere, safety and non-toxic in human and encapsulation technology. Also, we attempted to outline relevant physicochemical properties on the immunogenicity of microsphere vaccine and attainment of pulsatile release pater by combination of different microsphere, as well as to analyze immunological data associated with antigen delivery by microsphere. Although a lot of variables are related to the optimized microsphere formulation, we could conclude that judicious choice of proper polymer type, adjustment of particles size, and appropriate immunization protocol along with a suitable adjuvant might be a crucial factor for the generation of long-lasting immune response from a single-step vaccine formulation employing PLGA microsphere.

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.

Targeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • 제13권4호
    • /
    • pp.157-162
    • /
    • 2013
  • Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and- mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine production and can induce antigen-specific immune response in mucosal compartments, where FMDV infection has been initiated, which is hardly achievable through parenteral immunization. Given that effective delivery of vaccine materials into immune inductive sites is prerequisite for effective oral mucosal vaccination, M cell-targeting strategy is crucial in successful vaccination since M cells are main gateway for luminal antigen influx into mucosal lymphoid tissue. Here, we applied previously identified M cell-targeting ligand Co1 to VP1 of FMDV in order to test the possible oral mucosal vaccination against FMDV infection. M cell-targeting ligand Co1-conjugated VP1 interacted efficiently with M cells of Peyer's patch. In addition, oral administration of ligand-conjugated VP1 enhanced the induction of VP1-specific IgG and IgA responses in systemic and mucosal compartments, respectively, in comparison with those from oral administration of VP1 alone. In addition, the enhanced VP1-specific immune response was found to be due to antigen-specific Th2-type cytokine production. Collectively, it is suggested that the M cell-targeting strategy could be applied to develop efficient oral mucosal vaccine against FMDV infection.

B 임파구의 분화 (B-cell Differentiation)

  • 양만표;이창우;권종국;장곡천독언
    • 한국임상수의학회지
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 1991
  • The B-lymphocyte differentiation from committed B-cell progenitors to antibody-secreting cells was discussed. B-cell progenitors derived from hematopoietic stem cells undergo the rearrangement of immunoglobulin(Ig) gene. The earliest cells as B-cell precursors have cytoplasmic Is(${\mu}$ chain). The entire Is molecule is expressed on the surface after synthesis of L chain. The resting B cells(Go stage) stimulated by binding antigen via Ig-receptors are activated(G$_1$ stage) and followed by proliferation(S stage), coupled with further selection(affinity maturation. class switch). The production of antibody against a particular antigen depends on the activation of B cells with surface Is capable of reacting with that antigen. This process does not occur in isolation but is controlled by helper and suppressor T cells and antigen presenting cells(APC). The mechanism of T cell-dependent B-cell response for production of antibody is largely explained by the cell to cell cooperation and soluble helper factors of T cells. 1) The antigen specific B cells and helper T cells are linked by Is-receptors, leading to the delivery of helper signals to the B cells. 2) Helper T cells recognize the processed antigen-derived peptides with the MHC class II molecules(la antigen) and is stimulated to secrete B-cell proliferation and differentiation factors which activate B cells of different antigenic specificity. The two models are shown currently 1) At low antigen concentration, only the antigen-specific B cell binds antigen and presents antigen-derived peptides with la molecules to helper T cells, which are stimulated to secrete cytokines(IL-4, IL-5, etc.) and 2) At high antigen concentration, antigen-derived peptides are presented by specific B cells, by B cells that endocytose the antigens, as well as by APC Cytokines secreted from helper T cells also lead to the activation of B cells and even bystander B cells in the on- vironmment and differentiate them into antibody-secreting plasma cells.

  • PDF

Ginsan Enhances Humoral Antibody Response to Orally Delivered Antigen

  • Na, Hee Sam;Lim, You Jin;Yun, Yeon-Sook;Kweon, Mi Na;Lee, Hyun-Chul
    • IMMUNE NETWORK
    • /
    • 제10권1호
    • /
    • pp.5-14
    • /
    • 2010
  • Background: There have been several reports describing the capability of ginseng extracts as an adjuvant. In this study, we tested if ginsan, a polysaccharide extracted from Panax ginseng, was effective in enhancing antibody response to orally delivered Salmonella antigen. Methods: Ginsan was treated before oral salmonella antigen administration. Salmonella specific antibody was determined by ELISA. mRNA expression was determined by RT-PCR. Cell migration was determined by confocal microscopy and flow cytometry. COX expression was detected by western blot. Results: Ginsan treatment before oral Salmonella antigen delivery significantly increased both secretory and serum antibody production. Ginsan increased the expression of COX in the Peyer's patches. Various genes were screened and we found that CCL3 mRNA expression was increased in the Peyer's patch. Ginsan increased dendritic cells in the Peyer's patch and newly migrated dendritic cells were mostly found in the subepithelial dome region. When COX inhibitors were treated, the expression of CCL3 was reduced. COX inhibitor also antagonized both the migration of dendritic cells and the humoral immune response against oral Salmonella antigen. Conclusion: Ginsan effectively enhances the humoral immune response to orally delivered antigen, mediated by CCL3 via COX. Ginsan may serve as a potent vaccine suppliment for oral immunization.