• Title/Summary/Keyword: Antifungal compounds

Search Result 359, Processing Time 0.03 seconds

Allelopathic Effects of Artemisia lavandulaefolia

  • Kil, B.S.;Han, D.M.;Lee, C.H.;Kim, Y.S.;Yun, K.Y.;Yoo, H.G.
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2000
  • The allelopathic effects of Artemisia lavandulaefolia were studied using several test plants and microbes. Aqueous extracts and volatile compounds of A. lavandulaefolia inhibited seed germination, seedling and root growth of the test species such as Achyranthes japonica. Lactuca sativa, Artemisia princeps var. orientalis. Oenothera odorata, Plantago asiatica. Aster yomena, Elsholtzia ciliata, and Raphanus sativus var. hortensis for. acanthiformis. The root growth of test species was more affected than shoot growth by allelochemicals of A. lavandulaefolia. Essential oil of A. lavandulaefolia had antibacterial and antifungal effects. However, the antimicrobial activity of the essential oil was dependent upon the microbial species and concentrations. Callus growth of Oryza sativa, Brassica campestris subsp. napus var. pekinensis and Achyranthes japonica was sensitive by the essential oil of A. lavandulaefolia. Twenty three chemicals were identified from A. lavandulaefolia essential oil by gas chromatography. Primary allelochemicals among them were 1, 8-cineole, 1-$\alpha$-terpineol, $\alpha$-terpinene. camphor, 2-buten-1-ol and azulene. We concluded that aqueous extract and essential oil of A. lavandulaefolia were responsible for allelopathic effects.

  • PDF

Electrochemical, Antifungal, Antibacterial and DNA Cleavage Studies of Some Co(II), Ni(II), Cu(II) and Zn(II)-Copolymer Complexes

  • Dhanaraj, C. Justin;Nair, M. Sivasankaran
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • Cyclic voltammetric measurements were performed for Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride) (L) and Ni(II) and Cu(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-methacrylic acid) ($L^1$). The in vitro biological screening effects of the investigated compounds were tested against the fungal species including Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans and bacterial species including Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by well diffusion method. A comparative study of inhibition values of the copolymers and their complexes indicates that the complexes exhibit higher antimicrobial activity. Copper ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. The nuclease activity of the above metal complexes were assessed by gel electrophoresis assay and the results show that the copper complexes can cleave pUC18 DNA effectively in presence of hydrogen peroxide compared to other metal complexes. The degradation experiments using Rhodamine B dye indicate that the hydroxyl radical species are involved in the DNA cleavage reactions.

Studies on the Constituents of Hibiscus syriacus (I) (무궁화나무의 성분 및 생물활성에 관한 연구(I))

  • Lee, In-Kyoung;Ryoo, In-Ja;Choung, Dong-Ho;Han, Kyou-Hoon;Yun, Bong-Sik;Yoo, Ick-Dong
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.3
    • /
    • pp.112-116
    • /
    • 1997
  • Hibiscus syriacus L. (Malvaceae) is widely distributed over Korean, China, India and Siberia. The dried flower of Hibiscus syriacus is used as a folk medicine for curing of hematochezia, dysentery, obstruction due to wind-phlegm, regurgitation, and vomiting of food, and the dried root bark is used antipyretic, anthelmintic and antifungal agents. From a chloroform extract of root bark of this plant, compound I, II, and III were isolated and the structures were elucidated by various spectroscopic analyses. These compounds were identified as syringaresinol. E-N-feruloyltyramine, and Z-N-feruloyltyramine, respectively and were isolated from this plant for the first time. Compound II and III exhibited lipid peroxidation inhibitory activities with $IC_{50}$ of 15.5 and 28.6 ${\mu}g/ml$, respectively.

  • PDF

Synthesis of New 2-Thiouracil-5-Sulphonamide Derivatives with Antibacterial and Antifungal Activity

  • Fathalla O. A.;Awad S. M.;Mohamed M. S.
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1205-1212
    • /
    • 2005
  • 2-Thiouracil-5-sulphonic acid N-(4-acetylphenyl) Amide (1) was reacted with a series of aromatic aldehydes giving chalcones 2 (Claisen-Schemidt reaction), some of these chalcones were reacted with urea and thiourea giving pyrimidine-2-one and pyrimidine-2 thione derivatives respectively of the type 3a,b and 4a,b. In addition many chalcones were reacted with hydroxylamine hydrochloride giving isoxazoline derivatives 5a,b. They could also reacted with phenylhydrazine to give pyrazoline derivatives 5a,b, chalcones also were reacted withethylcyano acetate and/or malononitryl in pyridine giving pyran derivatives 7a,c and 8a,c. In another pathway chalcones were epoxidised by $H_{2}O_{2}$ giving epoxides 9a,c which in turn were reacted with phenylhydrazine giving 4-hydroxypyrazoline derivatives 10a,c. In another reaction chalcones were reacted with ethylcyanoacetate in presence of amm.acetate giving pyridone derivatives 11a,d which could be prepared also in exellent yield from compound 1 by its reaction with certain aromatic aldehydes and ethylcyanoacetate in presence of ammonium acetate. Finally, compound 1 was reacted with semicarbazide giving semicarbazone intermediate 12 which in turn was reacted with thionyl chloride giving thiadiazole derivative 13. The biological effects of some of the new synthesized compounds were also investigated.

Novel Synthesis of bis Acetylated Hybrid Pyrazoles as Potent Anticandidiasis Agents (항칸다디아 활성이 우수한 bis acetylated hybrid pyrazoles의 합성 연구)

  • Kanagarajan, V.;Ezhilarasi, M. R.;Gopalakrishnan, M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.256-261
    • /
    • 2011
  • A new series of bis acetylated hybrid pyrazoles were synthesized and characterized by their melting point, elemental analysis, MS, FT-IR, one-dimensional $^1H$, and $^{13}C$ NMR spectroscopic data. All the synthesized compounds were tested for their in vitro antifungal activities against Candida sp. namely Candida albicans, Candida glabrata, Candida parapsilosis, Candida dubliniensis and Candida tropicalis. A close inspection of the in vitro anticandidal activity profile in differently electron donating ($CH_3$ and $OCH_3$) and electron withdrawing (-F, -Cl, and Br) functional group substituted phenyl rings of novel hybrid pyrazoles exerted strong anticandidal activity against all the tested Candida species.

Antifungal Activities of Copper(II) with Biosensitive Macrocyclic Schiff Base Ligands Derived from 4-Aminoantipyrine Derivatives

  • Gopalakrishnan, S.;Joseph, J.
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Novel copper(II) complexes have been synthesized from the macrocyclic Schiff bases derived from Knoevenagel condensed ${\beta}$-ketoanilides (obtained by the condensation of acetoacetanilide and substituted benzaldehydes), 4-aminoantipyrine and ophenylene diamine. The structural features have been determined from their analytical and spectral data. All the Cu(II) complexes exhibit square planar geometry. Their high molar conductance values support their 1 : 2 electrolytic nature. The magnetic moment data provide evidence for the monomeric nature of the complexes. The X-band ESR spectra of the |$CuL^1$|$(OAc)_2$ in DMSO solution at 300 and 77 K were recorded and their salient features are reported. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by well diffusion method. A comparative study of inhibition values of the Schiff bases and their complexes indicate that complexes exhibit higher antimicrobial activity than the Schiff bases. Copper ions proved to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium.

Herbicidal and Antifungal Activities of the aqueous extracts of Several Naturalized Plants (수종의 귀화식물 수용성추출물의 제초 및 항균 활성 탐색)

  • Hyoun, Do-Gyoung;Song, Jin-Young;Kim, Tae-Keun;Jung, Dae-Cheon;Song, Sang-Churl;Kang, Young-Sik;Cha, Jin-Woo;Lee, Hee-Sean;Yang, Young-Hoan;Kim, Hyoun-Chol;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.303-319
    • /
    • 2014
  • The study researched germination of the plants and growth of experimented bacteria according to concentration of water extract in order to provide basic data for developing natural agricultural resources by using naturalized plants including Solidago altissima, Amaranthus retroflexus and Sida spinosa. As concentration of water extract increased, most of test plants showed a decrease in relative germinability. Sida spinosa(r=-0.540, p<0.01), Physalis wrightii(r=-0.693, p<0.01), Amaranthus retroflexu(r=-0.724, p<0.01), Solidago altissima(r=-0.728, p<0.01) and Eclipta prostrata(r=-0.779, p<0.01) showed tendency of decrease in relative germinative power in order, respectively. For average germination period, as concentration of the processed group increased, the time for germination increased (r = 0.769, p<0.01) and according to donor plants and test plants, there was a little difference. Also, as concentration of water extract of donor plant, length of above-aerial part(r=-0.587, p<0.01), length of underground part(r=-0.741, p<0.01), fresh weight(r=-0.574, p<0.01) and generation of root hair decreased. An then, for growth of test fungi according to concentration of water extract of donor plants, growths of Botrytis cinerea(r=-0.266, p<0.05), Diaporthe citri(r=-0.323 p<0.01), Colletotrichum gloeosporioides(r=-0.512, p<0.01), Pythiumultimum(r=-0.581, p<0.01) and Rhizoctonia solani(r=-0.806, p<0.01) were repressed in order, respectively. For total amount of content of phenol with herbicidal and Antifungal activities, S. altissima $17.3{\pm}0.5mg/g$, A. retroflexus $13.1{\pm}0.3mg/g$, P. wrightii $12.0{\pm}0.4mg/g$, S. spinosa $9.5{\pm}0.1mg/g$ and E. prostrata L. $4.1{\pm}0.1mg/g$ showed in order, respectively. As these results are summarized, donor plants which were naturalized, have competitive advantage because they release phenolic compounds with allelopathic effect and affect on germination, growth and fungi growth on underground flora compared to native plants and they have eligibility for natural herbicide and germicide.

Synthesis and antifungal activities of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-arylthiazol-5-yl]piperidine derivatives on Phytophthora capsici (4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-arylthiazol-5-yl] piperidine 유도체들의 합성과 고추역병균에 대한 살균활성)

  • Nam, Seok-Woo;Lee, Gyung-Rak;Kim, Tae-Joon;Chung, Bong-Jin;Choi, Won-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Fungicidal activities against phytopathogenic fungi of diarylthiazole compound of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (I) have been determined to be excellent and compound I was used as the leading compounds in this study. Furthermore, the compound was synthesized by reacting them with five functional groups, 4-fluoro-3-methylphenyl, 4-fluoro-3-chlorophenyl, 4-chloro-2-fluorophenyl, 4-bromo-3-methylphenyl and 2,4-dichlorophenyl groups instead of 4-fluorophenyl group. Also, 2-amino-, 2-(N-ethoxycarbonyl)piperidin-4-yl-, and 2-piperidin-4-yl-thiazole were introduced as the leads instead of 2-N-methylpiperidine-4-yl-thiazol of compound I. VIII-1~VIII-5 and XIII-1~XV-5 compounds were newly synthesized and their structures were confirmed by $^1H$-NMR-spectrum. The fungicidal activities of all the synthesized compounds against Phytophthora capsici were examined using the whole plant method. Among the VIII-1~VIII-5 and XIII-1~XV-5 chemicals, XIV-3 showed the most potent antifungal activity in vivo. While the $EC_{50}$ and $EC_{90}$ values of the commercial fungicide dimethomorph and I were $4.26{\pm}0.02$, $14.72{\pm}0.05$ and $1.01{\pm}0.11$, $6.31{\pm}0.09mM$, those of 4-[5-(2-cyclopropylaminopyrimidin-4-yl)-4-(4-chloro-2-fluorophenyl)thiazol-5-yl]-1-methylpiperidine (XIV-3) was $0.98{\pm}0.21$ and $5.85{\pm}0.05mM$. Therefore, XIV-3 can be considered as a viable candidate for the control of plant diseases caused by P. capsici, and further studies will be conducted on the mode of action XIV-3.

Biological and Antifungal Activity of Herbal Plant Extracts against Candida Species (수종의 한약재 추출물의 항산화 활성 및 항진균 활성)

  • Kim, Jae-Young;Yi, Yong-Sub;Lim, Yoong-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Anticandidial activity of seven herbal extracts, Taraxacum Platycarpum, Houttuyniae Herba, Lonicerae Flos, Anemarrhena Rhizome, Forsythia Fruit, Paeoniae Ratix, and Coptidis Rhizoma, were determined against five different Candida sp. by agar diffusion assay. The concentration of total phenolic compounds of seven herbal extracts ranged from 0.6 to $2.5{\mu}g/mg$. The total antioxidant activities showed that Taraxacum Platycarpum and Houttuyniae Herba were 60% in 80% ethanol extract and Lonicera Flower and Paeoniae Ratix were 70, 75%, respectively, in 100% ethanol extract. Coptidis Rhizoma extract showed antifungal activity against non-Candida albicans, C. tropicalis and C. glabrata. The MIC values of a compound separated in TLC from Coptidis Rhizoma extract were 24, and $48{\mu}g/mL$ against C. tropicalis and C. glabrata. The above compound showed the same retention time with berberin in HPLC analysis.

Synthesis of Trifluoromethylated Dihydro-1,4-oxathiin Carboxanilides and Their Fungicidal Activity (삼불화메틸기가 포함된 디히드로-1,4-옥사티인 카르복스아닐리드 유도체의 합성과 살균 활성)

  • Nam, Kee-Dal;Kim, Jin-Cheol;Cho, Kwang-Yun;Hahn, Hoh-Gyu
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.191-196
    • /
    • 2001
  • ${\alpha},{\beta}$-Unsaturated carboxanilides 5 with trifluromethylated dihydro-1,4-oxathiins were synthesized for the development of new agrochemical fungicide. Chlorination of trifluoromethylated ${\beta}-keto$ ester 6 followed by the reaction with 1,2-mercaptoethanol gave intermediate 1,4-oxathiane 11. Without purification of 11, substitution of hydroxy group by chlorine, followed by dehydrochlorination of 10 in the presence of triethylamine afforded trifluoromethylated dihydro-1,4-oxathiin ethyl ester 9. Acylation of the hydroxy group of the carboxylic acid 12 followed by treatment of various amines gave the corresponding trifluoromethylated dihydro-1,4-oxathiin carboxamides 5. Antifungal screening (in vivo) of the synthesized compounds against typical plant diseases, which include rice blast, rice sheath blight, cucumber gray mold, tomato late blight, wheat leaf rust, and barley powdery mildew, was carried out. Where meta position of the phenyl group was substituted with isopropoxy or isopropyl group, excellent antifungal activities against rice sheath blight and wheat leaf rust were detected.

  • PDF