• 제목/요약/키워드: Antifungal and (TEM)

검색결과 9건 처리시간 0.023초

Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route

  • Patino-Portela, Melissa C.;Arciniegas-Grijalba, Paola A.;Mosquera-Sanchez, Lyda P.;Sierra, Beatriz E. Guerra;Munoz-Florez, Jaime E.;Erazo-Castillo, Luis A.;Rodriguez-Paez, Jorge E.
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.191-210
    • /
    • 2021
  • To compare the antifungal effect of two nanomaterials (NMs), nanoparticles of zinc oxide were synthesized by a chemical route and zinc oxide-based nanobiohybrids were obtained using green synthesis in an extract of garlic (Allium sativum). The techniques of X-Ray Diffraction (XRD), Infrared (IR) and Ultraviolet Visible (UV-Vis) absorption spectroscopies and Scanning (SEM) and Transmission Electron Microscopies (TEM) were used to determine the characteristics of the nanomaterials synthesized. The results showed that the samples obtained were of nanometric size (< 100 nm). To compare their antifungal capacity, their effect on Cercospora sp. was evaluated. Test results showed that both nanomaterials had an antifungal capacity. The nanobiohybrids (green route) gave an inhibition of fungal growth of ~72.4% while with the ZnO-NPs (chemical route), inhibition was ~87.1%. Microstructural studies using High Resolution Optical Microscopy (HROM) and ultra-structural analysis using TEM carried out on the treated strains demonstrated the effect of the nanofungicides on the vegetative and reproductive structures, as well as on their cell wall. To account for the antifungal effect presented by ZnO-NPs and ZnO nanobiohybrids on the fungi tested, effects reported in the literature related to the action of nanomaterials on biological entities were considered. Specifically, we discuss the electrical interaction of the ZnO-NPs with the cell membrane and the biomolecules (proteins) present in the fungi, taking into account the n-type nature of the ZnO semiconductor and the electrical behavior of the fungal cell membrane and that of the proteins that make up the protein crown.

Silver Nanoparticles Effect on Antimicrobial and Antifungal Activity of New Heterocycles

  • Kandile, Nadia G.;Zaky, Howida T.;Mohamed, Mansoura I.;Mohamed, Hemat M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3530-3538
    • /
    • 2010
  • In this study 1-[4-(2-methoxy benzyl)-6-aryl-pyridazin-3(2H)-ylidene] hydrazines were used for the synthesis of new heterocyclic systems such as thiazolidine, phthalazine, pyrazolo, tetrazolo, hydrazide and new pyridazine derivatives to explore the effect of silver nanoparticles on their biological activity efficiency. Structures of the new heterocycles were characterized by the aid of several analytical techniques including; $^1H$-NMR, FTIR and mass spectra. Silver nanoparticles were synthesized by a simple methodology and the formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and UV studies. Most of the new prepared heterocycles were evaluated in vitro as new antimicrobial agents. Combination effects of the silver nanoparticles on the antimicrobial activity of the new heterocycles were investigated using the disk diffusion method. Compound 10a exhibited the strongest enhancing effect of silver nanoparticles solution against Aspergillus flavus and Candida albicans.

Antifungal Activities of the Essential Oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their Constituents against Various Dermatophytes

  • Park, Mi-Jin;Gwak, Ki-Seob;Yang, In;Choi, Won-Sil;Jo, Hyun-Jin;Chang, Je-Won;Jeung, Eui-Bae;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • 제45권5호
    • /
    • pp.460-465
    • /
    • 2007
  • This study was carried out in order to investigate the potential of using plant oils derived from Leptospermum petersonii Bailey and Syzygium aromaticum L. Merr. Et Perry as natural antifungal agents. The antifungal effects of essential oils at concentrations of 0.05, 0.1, 0.15, and 0.2 mg/ml on the dermatophytes Microsporum canis (KCTC 6591), Trichophyton mentagrophytes (KCTC 6077), Trichophyton rubrum (KCCM 60443), Epidermophyton floccosum (KCCM 11667), and Microsporum gypseum were evaluated using the agar diffusion method. The major constituents of the active fraction against the dermatophytes were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography analysis. The antifungal activities of S. aromaticum oil (clove oil) against the dermatophytes tested were highest at a concentration of 0.2mg/ml, with an effectiveness of more than 60%. Hyphal growth was completely inhibited in T. mentagrophytes, T. rubrum, and M. gypseum by treatment with clove oil at a concentration of 0.2 mg/ml. Eugenol was the most effective antifungal constituent of clove oil against the dermatophytes T. mentagrophytes and M. canis. Morphological changes in the hyphae of T. mentagrophytes, such as damage to the cell wall and cell membrane and the expansion of the endoplasmic reticulum, after treatment with 0.11 mg/ml eugenol were observed by transmission electron microscopy (TEM). At a concentration of 0.2 mg/ml, L. petersonii oil (LPO) was more than 90% effective against all of the dermatophytes tested, with the exception of T. rubrum. Geranial was determined to be the most active antifungal constituent of L. petersonii oil. Taken together, the results of this study demonstrate that clove and tea tree oils exhibited significant antifungal activities against the dermatophytes tested in this study.

피부사상균 균사의 형태학적 변화를 통한 일본잎갈나무 정유의 항진균 활성 효과 구명 (Evaluation on Anti-Dermatophyte Effect of Larix (kaempferi) Essential Oil on the Morphological Changes of Eermatophyte Fungal Hyphae)

  • 김선홍;이수연;홍창영;장수경;이성숙;박미진;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권3호
    • /
    • pp.247-257
    • /
    • 2013
  • 본 연구는 피부사상균 Epidermophyton floccosum, Trichophyton mentagrophytes, Trichophyton rubrum에 대한 일본잎갈나무 정유의 항진균 활성을 평가하고, 항진균 유효성분을 구명하고자 하였다. 또한 일본잎갈나무 정유에 노출된 피부사상균의 균사를 전자현미경으로 관찰하여 일본잎갈나무 정유의 항진균 효과를 균사의 형태학적 변화를 통하여 밝히고자 하였다. 일본잎갈나무 정유의 주성분은 (-)-bornyl acetate였으며, MIC는 모든 균에 대해 125 ppm을 나타냈다. 한천희석법을 통한 항진균 활성 평가에서는 모든 균에 대해 500 ppm 이상에서 100%의 활성, 100 ppm의 낮은 농도에서도 50% 이상의 활성을 나타냈다. SEM과 TEM을 통해 균사를 관찰한 결과, 일본잎갈나무 정유에 노출된 E. floccosum은 정상세포와 다른 균사 형태가 관찰되었다. 팡이실 모양의 격막을 갖고 있는 곧고 매끈한 표면의 정상세포와는 달리, 처리구에서는 균사 표면에 주름이 있었으며 균사가 터지거나 접히고 부풀어 오른 것, 세포소기관과 세포벽이 붕괴된 것도 관찰되었다. 분획을 통해 일본잎갈나무 정유의 항진균 유효성분을 확인한 결과, (-)-${\tau}$-muurolol, (+)-terpinen-4-ol, ${\alpha}$-terpineol, ${\alpha}$-cadinol 등의 terpene alcohol 화합물이었다.

Ultrafine Copper Nanoparticles Exhibiting a Powerful Antifungal/Killing Activity Against Corticium Salmonicolor

  • Cao, Van Du;Nguyen, Phuong Phong;Khuong, Vo Quoc;Nguyen, Cuu Khoa;Nguyen, Xuan Chuong;Dang, Cap Ha;Tran, Ngoc Quyen
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2645-2648
    • /
    • 2014
  • In this paper ultrafine copper nanoparticles (CuNPs) were prepared from copper salt via chemical reduction method with sodium citrate dispersant and polyvinylalcol (PVA) capping polymer. The colloidal CuNPs were characterized by using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) techniques. Our obtained results indicated that the CuNPs were produced ranging from 2 to 4 nm in diameter. The colloidal solution at 7 ppm of CuNPs exhibited a powerful antifungal activity against Corticium salmonicolor (C. Salmonicolor). Fungal killing assays showed colloid solutions containing 10 ppm of CuNPs killed entirely the cultured fungus. A highly killing activity against the fungus was also performed when the CuNPs were sprayed on pink disease-infected rubber trees. These positive results may offer a great potential to produce CuNPs-based eco-fungicide for pink disease.

소수성 항진균제 전달체로 응용하기 위한 데옥시콜릭산이 결합된 저분자량 수용성 키토산 나노입자의 제조와 특성 (Preparation and Characterization of Deoxycholic Acid-Conjugated Low Molecular Weight Water-Soluble Chitosan Nanoparticles for Hydrophobic Antifungal Agent Carrier)

  • 최창용;정현;남정표;박윤경;장미경;나재운
    • 폴리머
    • /
    • 제33권4호
    • /
    • pp.389-395
    • /
    • 2009
  • 저분자량수용성 키토산(LMWSE)을 소수성 항진균제 전달체로 응용하기 위하여, 데옥시콜릭산(deoxycholic acid, DA)을 이용하여 LMWSE를 화학적으로 개질하였다. DA가 결합된 LMWSC 나노입자(WSEDA)의 특성은 동적 광산란기, 투과전자현미경을 이용하여 그 특성을 분석하였다. 제조되어진 나노입자의 크기는 $250{\sim}350\;nm$로 DA의 치환도가 증가함에 따라 입자의 크기가 증가하였다. 항진균제인 이트라코나졸(itraconazole)이 봉입된 WSEDA 나노입자(WSEDA-ITCN)는 소수성 상호작용을 이용한 용매 증발법으로 제조하였다. UV 분광광도계를 이용하여 약물의 함량 및 담지 효율을 측정한 결과 약물의 담지 효율은 $61{\sim}68%$로 우수한 담지 효율을 보였다. 약물방출 거동에서 이트라코나졸이 봉입된 나노파티클의 DA의 함량이 많아질수록 약물이 천천히 방출되었다. 이상의 결과로부터 본 연구에서 제조한 DA가 결합된 저분자량 수용성 키토산 나노파티클이 항진균제 전달체로서 매우 높은 응용 가능성을 나타내고 있음을 확인하였다.

PHOTOCATALYTIC ANTIEUNGAL ACTIVITY AGAINST CANDIDA ALBICANS BY $TiO_2$ COATED ACRYLIC RESIN DENTURE BASE

  • Yang Ji-Yeon;Kim Hee-Jung;Chung Chae-Heon
    • 대한치과보철학회지
    • /
    • 제44권3호
    • /
    • pp.284-294
    • /
    • 2006
  • Statement of problem. Proliferation of Candida albicans is primarily within the plaque on the fitting surface of the denture rather than on the inflamed mucosa. Consequently, the treatment of the denture is equally important as treatment of the tissue. Cleansing and disinfection should be efficiently carried-out as the organisms can penetrate into the voids of the acrylic resin and grow in them, from which they can continue to infect and reinfect bearing tissues. Purpose. The purpose of this study was to evaluate the applicability of photocatalytic reaction to eliminate Candida albicans from acrylic resin denture base, and to investigate the anti-fungal effect with various UVA illumination time. Materials and Methods. The specimens were cured by the conventional method following the manufacturer's instruction using thermal polymerized denture base resin (Vertex RS: Dentimex, Netherlands). $TiO_2$ photocatalyst sol(LT), which is able to be coated at normal temperature, was made from the Ti-alkoxide progenitor. The XRD patterns, TEM images and nitrogen absorption ability of the $TiO_2$ photocatalyst sol(LT) were compared with the commercial $TiO_2$ photocatalyst P-25. The experimental specimens were coated with the mixture of the $TiO_2$ photocatalyst sol(LT) and binder material (silane) using dip-coater, and uncoated resin plates were used as the control group. Crystallinity of $TiO_2$ of the specimen was tested by the XRD. Size, shape and chemical compositions were also analyzed using the FE-SEM/ EDS. The angle and methylene blue degradation efsciency were measured for evaluating the photocatalytic activity of the $TiO_2$ film. Finally, the antifungal activity of the specimen was tested. Candida albicans KCTC 7629(1 ml, initial concentration $10^5$ cells/ ml) were applied to the experiment and control group specimens and subsequently two UVA light source with 10W, 353 nm peak emission were illuminated to the specimens from 15cm above. The extracted $2{\mu}l$ of sample was plated on nutrient agar plate ($Bacto^{TM}$ Brain Heart Infusion; BD, USA) with 10 minute intervals for 120 minute, respectively. It was incubated for 24 hours at $37^{\circ}C$ and the colony forming units (CFUs) were then counted. Results. Compared the characteristics of LT photocatalyst with commercial P-25 photocatalyst, LT were shown higher activity than P-25. The LT coated experimental specimen surface had anatase crystal form, less than 20 nm of particle size and wide specific surface area. To evaluate the photocatalytic activity of specimens, methylene blue degradation reaction were used and about 5% of degradation rate were measured after 2 hours. The average contact angle was less than $20^{\circ}$ indicating that the LT photocatalyst had hydrophilicity. In the antifungal activity test for Candida albicans, 0% survival rate were measured within 30 minute after irradiation of UVA light. Conclusion. From the results reported above, it is concluded that the UVA-LT photocatalytic reaction have an antifungal effect on the denture surface Candida albicans, and so that could be applicable to the clinical use as a cleaning method.

전나무 정유의 항진균 효과와 유효성분의 시너지효과 평가 (Evaluation on Anti-fungal Activity and Synergy Effects of Essential Oil and Their Constituents from Abies holophylla)

  • 김선홍;이수연;조성민;홍창영;박미진;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권1호
    • /
    • pp.113-123
    • /
    • 2016
  • 본 연구는 전나무 정유의 Epidermophyton floccosum, Trichophyton mentagrophytes, Trichophyton rubrum과 같은 피부사상균에 대한 항진균 활성을 구명하고 피부염 치료제로서의 전나무 정유의 잠재력을 평가하고자 하였다. 전나무 정유와 분획물, 유효성분의 표준시약을 이용하여 한천희석법, paper disc 확산법, TEM을 이용한 세포 변화 관찰 등을 통해 항진균 활성을 평가하였고, 주성분은 GC-MS로 분석하였다. 유효성분들의 시너지효과는 체커보드법을 통해 평가하였다. 그 결과, 가장 높은 활성을 나타낸 물질은 ${\alpha}$-bisabolol을 함유하고 있는 분획 G4였으며 다른 분획 보다 뛰어나게 높은 활성을 나타냈다. 체커보드법을 통해 ${\alpha}$-bisabolol과 bornyl acetate를 병용시 뛰어난시너지 효과를 나타냈고 세포 변화 관찰을 통해 분획 G4에 노출된 E. floccosum과 T. rubrum 균사는 정상세포와 달리 세포막과 세포소기관이 파괴됨이 관찰되었다. 따라서 전나무 정유와 그 구성성분들은 높은 항진균 효과를 가지고 있기 때문에 피부염 치료제의 원료로 이용이 가능할 것이라 기대되며, 특히 ${\alpha}$-bisabolol의 우수한 항진균 활성에 주목할 필요가 있다고 사료된다.

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • 제5권2호
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.