• Title/Summary/Keyword: Antifungal active substance

Search Result 21, Processing Time 0.018 seconds

Isolation of Antifungal Activity Substance from Rheum australe D. Don Roots against Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen (장변대황(Rheum australe D. Don)으로부터 분리된 토마토 시들음병원균(Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen)에 대한 항진균 활성물질 구명)

  • Choi, Ji-Su;Lee, Dong-Woon;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.1
    • /
    • pp.95-108
    • /
    • 2020
  • To develop an environment-friendly fungicide for controlling tomato wilt diseases, antifungal active substance was isolated Rheum australe D. Don roots against Fusarium oxysporum f. sp. lycopersici, a pathogen of tomato wilt, in this study. Methanol extract obtained from Rheum australe roots was successively fractionated with hexane, chloroform, ethyl acetate, butanol and water. The ethyl acetate fraction, which showed the highest antifungal activity, was separated by column chromatography, and 60 subfractions were obtained. The 60 subfractions were anlayzed for antifungal activities by bioassay. The active compound was identified as 5-[(E)-2- (3-hydroxy-4-methoxyphenyl)ethenyl]benzene-1,3-diol (rhapontigenin) by NMR and GC-MS analysis. As a result of testing antifungal activity of rhapontigenin against Fusarium oxysporum, EC50 of rhapontigenin was showed strong antifungal activity at 7.48 mg/L. Therefore, this study showed that the Rheum australe roots extract can be a potential candidate which is a environment-friendly fungicide against Fusarium oxysporum.

Isolation and Numerical Identification of Streptomyces humidus strain S5-55 Antagonistic to Plant Pathogenic Fungi

  • Lim, Song-Won;Kim, Jeong-Dong;Kim, Biom-Seok;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.189-199
    • /
    • 2000
  • To search for the antifungal substances, various actino-mycete isolates were obtained from various soils of Korea using plate dilution method on the humic acid vitamin agar plates. In the screening procedures using a dual culture method, 32 actionomycete isolates were selected, which showed the inhibitory activity against mycelial growth of plant pathogenic fungi Altirnaria mali, Colletotrichum gloeosporides, Fusarium oxysporum f.sp. cucumerinum, Magnaporthe grisea, Phytophthora capsici, and Rhizoctonia solani. Bioassay of the crude extracts from culture filtrates and mycelial mets revealed that 12 antagonistic actionomycetes produced highly active antifungal substances. Actinomycete strain S5-55 which showed the substantial antifungal activity against the tested fungi was selected for production of the antifungal substances. Based on the cytochemical and morphological characteristics, strain S5-55 was identified as a Streptomyces species. The results of the numerical identification using the TAXON program confirmed that Streptomyces strain S5-55 was identical with Streptomyces humidus including in TAXON major cluster 19. The production of antifungal substance was most favorable when S. humidus strain S5-55 was cultivated for 10 dats on soluble starch broth supplemented with $K_2$HPO$_4$. The antifungal substances active against the plant pathogenic fungi P. capsici and M. grisea were partially purified using $\textrm{C}_{18}$ reversed-phase column chromatography.

  • PDF

Verlamelin, an Antifungal Compound Produced by a Mycoparasite, Acremonium strictum

  • Kim, Jin-Cheol;Park, Gyung-Ja;Kim, Hyun-Ju;Kim, Heung-Tae;Ahn, Jong-Woong;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.102-105
    • /
    • 2002
  • A strain of Acremonium strictum, the mycoparasite of Botrytis cinerea, showed strong antifungal activities both in vitro and in vivo against several phytopathogenic fungi. An antifungal substance was purified from the liquid cultures of A. strictum and identified as verlamelin by instrumental analyses. Verlamelin exhibited in vitro antifungal activity against some phytopathogenic fungi such as Magnaporthe grisea, Bipolaris maydis, and Botrytis cinerea, while it was net active against all the bacteria tested. In viva, verlamelin exhibited strong protective and curative activities, particularly against barley powdery mildew. At 100 μg/ml, it inhibited the development of barley powdery mildew with control values of more than 90% in 7-day protective and 2-day curative applications. This is the first report on the production of verlamelin by Acremonium species.

In Vivo Disease Control Efficacy of Isoquinoline Alkaloids Isolated from Corydalis ternata against Wheat Leaf Rust and Pepper Anthracnose

  • Han, Jae Woo;Shim, Sang Hee;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Hun;Choi, Gyung Ja
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.262-266
    • /
    • 2018
  • Phytochemicals have been considered as alternatives for synthetic fungicides because of their biodegradability and low toxicity. In this study, we found that the methanolic extract of Corydalis ternata suppressed the development of plant diseases caused by Puccinia triticina and Colletotrichum coccodes. As the antifungal substance, three isoquinoline alkaloids (dehydrocorydaline, stylopine, and corydaline) were isolated from C. ternata. These active compounds also exhibited in vivo antifungal activity against P. triticina and C. coccodes. Taken together, our results suggest that C. ternata and its active compounds can be used to control plant diseases.

Characterization of Antibiotic Substance Produced by Serratia plymuthica A21-4 and the Biological Control Activity against Pepper Phytophthora Blight

  • Shen, Shun-Shan;Piao, Feng-Zhi;Lee, Byong-Won;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.180-186
    • /
    • 2007
  • The biocontrol agent, Serratia plymuthica A21-4, has been developed for controlling pepper Phytophthora blight. Serratia plymuthica A21-4 strongly inhibits the mycelial growth, zoospore formation, and cyst germination of Phytophthora capsici in vitro. The application of a cell suspension of strain A21-4 to pepper plants in pot experiments and in greenhouse successfully controlled the disease. The bacteria produced a potent antifungal substance which was a key factor in the suppression of Phytophthora capsici. The most active chemical com-pound was isolated and purified by antifungal activity-guided fractionation. The chemical structure was identified as a chlorinated macrolide $(C_{23}H_{31}O_8Cl)$ by spectroscopic (UV, IR, MS, and NMR) data, and was named macrocyclic lactone A21-4. The active compound significantly inhibited the formation of zoosporangia and zoospore and germination of cyst of P. capsici at concentrations lower than $0.0625{\mu}g/ml$. The effective concentrations of the macrocyclic lactone A21-4 for $ED_{50}$ of mycelial growth inhibition were $0.25{\mu}g/ml,\;0.25{\mu}g/ml,\;0.30{\mu}g/ml \;and\;0.75{\mu}g/ml$ against P. capsici, Pythium ultimum, Sclerotinia sclerotiorum and Botrytis cinerea, respectively.

Concanamycin B, Active substance Against Phytophthora capsici Produced by Streptomyces neyagawaensis 38D10 Strain (Streptomyces neyagawaensis 38D10 균주가 생산하는 concanamycin B의 항고추역병 활성)

  • Kim, Chang-Jin;Lee, In-Kyoung;Yun, Bong-Sik;Yoo, Ick-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.322-328
    • /
    • 1993
  • During the screening of antifungal compounds from microbial secondary metabolites to control phytophthora blight of red pepper caused by Phytophthora capsici, a soil isolate, strain 38D10 was selected. Based on taxonomic studies, this strain was identified as Streptomyces neyagawaensis. The antifungal compound was purified from culture broth by HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, HPLC and identified as concanamycin B by UV. $^1H$-NMR, $^{13}C$-NMR, SIMS analysis. Concanamycin B has strong antifungal activity against some phytopathogenic fungi but not antivacterial activity and preventive value were 50% and 100% at 125ppm and 250ppm in pot assay.

  • PDF

Isolation of Antimicrobial Active Substance from Usnea longissima against Sclerotial Rot (Sclerotinia sclerotiorum) (송라(Usnea longissima)추출물로부터 균핵병 병원균(Sclerotinia sclerotiorum)에 대한 항균 활성물질 탐색)

  • Kwon, Yubin;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.887-896
    • /
    • 2015
  • To develop environment-friendly agricultural products with anti-microbial activity against Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Usnea longissima was extracted by methanol and its extract was fractionated into several solvent fractions. The chloroform fraction, which showed the highest antimicrobial activity, was separated by silica gel-column chromatography and obtained into nine group subfractions. The nine group fractions were searched the antifungal activities by bioassay. The most active No. 3 subfraction was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to database of Wiley library. As a result, Usnic acid was identified as main compounds. In conclusion, Usnic acid isolated from Usnea longissima was antimicrobial chemical against Sclerotinia sclerotiorum as a pathogen of sclerotium disease.

Antifungal Activity or Coptis japonica Root-stem extract and Identification of Antifungal Substances (황련추출액의 항균활성과 항균성물질의 동정)

    • Korean Journal of Plant Resources
    • /
    • v.12 no.4
    • /
    • pp.260-268
    • /
    • 1999
  • Crude extract of Coptis japonica root-stem was evaluated for antifungal activity against Phytophthora capsici, Fusarium oxysporum, Colletotrichum dematium, Colletotrichum truncatum, Botrytis cinerea, Botryosphaeria dothidea and Alternaria porri, and antifungal active compound from the extract was identified. In addition, the usefulness of the extract for some plants disease control was investigated. Crude extract of C. japonica root-stem exhibited antifungal activity against P. capsici, F. oxysporum, C. dematium, B. cinerea, B. dothidea and A. porri. Antifungal activity of the substance isolated from C. japonica root-stem was similar to a standard chemical berberine-Cl. Red-pepper fruit rot, sesame stem rot and welsh-onion alternaria leaf spot were effectively controlled by the crude extract of C. japonica root-stem. Phytotoxicity was not observed in the red-pepper and welsh-onion leaves and red-pepper and strawberry fruits with exogenous foliage application of the crude extract. Seeds germination and radicle growth of red-pepper and sesame were inhibited by the crude extract of C. japonica root-stem. 4.24g of yellowish compound per 100g of C. japonica root-stem was obtained. The compound was identified as berberine-Cl by HPLC.

  • PDF

Fungal-Sporulation Suppressing Substances Produced by Pseudomonas aeruginosa KMCS-1

  • Min, Bu-Yong;Shim, Jae-Young;Kim, Kun-Woo;Lee, Jong-Kyu;Choi, Hyung-Tae;Yoon, Kwon-Sang
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.284-288
    • /
    • 1996
  • Among the bacteria isolated from compost piles of cattle excretion in a pasture located at the suburbs of Chunchon city, Pseudomonas aeruginosa KMCS-1 was selected for the test of antifungal substances produced. Six fractions were separated by silica gel column chromatography, and then the antifungal activity of each fraction was assayed against Escherichia coli, Bacillus subtilis, Candida albicans, Rhizopus sp., Aspergillus nidulans, Coprinus cinereus, and Pyricularia oryzae by paper disc method. Two fractions showed significant suppressive activities against A. nidulans, C. cinereus, and P. oryzae however, their mycelial growth was not affected by neither of these fractions. Inhibitory activities of these fractions to sporulation was assayed at the concentration of 50. 25, 12. 5, and 6.25 $\mu$g/ml and the average inhibition rates against sporulation of A. nidulans, C. cinereus, and P. oryzae were 94.0, 98.3, and 77.9%, respectively. Further purification and analysis of active substances are now being conducted.

  • PDF

Antifungal activities of β-thujaplicin originated in Chamaecyparis obtusa

  • Kwon, Yubin;Kim, Hyun-Sang;Kim, Hyun-Woo;Lee, Dong Woon;Choi, Yong-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.265-269
    • /
    • 2017
  • Environment-friendly, commercially-available agricultural products were investigated for antimicrobial activity against Sclerotinia sclerotiorum, as a pathogen of sclerotium disease. Then ${\beta}$-thujaplicin from Chamaecyparis obtuse was investigated for antifungal activity against six kinds of pathogenic fungi. It showed a statistically significant (p <0.001) growth inhibition effect on Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Rhizoctonia solani AG-4 as a pathogen of damping off, Phytophthora capsici as a pathogen of phytophthora blight, and Colletotrichum coccodes as a pathogen of anthracnose at a concentration of 50 ppm and on Stemphylium solani as a pathogen of spotting disease and Alternaria alternata as a pathogen of black mold at a concentration of 100 ppm. In conclusion, these results indicate that it may be possible to develop environment-friendly agricultural products using ${\beta}$-thujaplicin compounds.