• 제목/요약/키워드: Antifreeze

검색결과 72건 처리시간 0.025초

Antifreeze Activity in Temperate Fish from the East Sea, Korea

  • Kim, Hak Jun
    • Fisheries and Aquatic Sciences
    • /
    • 제18권2호
    • /
    • pp.137-142
    • /
    • 2015
  • Antifreeze proteins and glycoproteins [AF(G)Ps] constitute a group of proteins that lower the freezing but not the melting points of aqueous solutions, enabling polar and north-temperate fish to survive in ice-laden environments. However, little is known about antifreeze activity in temperate fish; such work would extend our knowledge on the functions and evolution of AF(G)Ps. In the present study, we screened for antifreeze activity in temperate fish caught off the coast of Jumunjin ($37.89^{\circ}N$), Gangneung, Korea. Thermal hysteresis (TH) and the ability to inhibit ice recrystallization (IR) in blood, liver, and muscle samples from nine fish were examined to assess antifreeze activity. As the East Sea off the coast of Jumunjin is ice-free year round, we thought it most unlikely that the fish would express antifreeze proteins. Surprisingly, the blood of Pleurogrammus azonus and three types of tissue from Gymnocanthus herzensteini, Zoarces gilli and Kareius bicoloratus exhibited measurable TH values together with the ability to trigger characteristic morphological changes in ice crystals. Blood samples from the three species also evidenced ice recrystallization (IR) inhibition. This implies that AF(G)Ps or other antifreeze-like substances are present in temperate fish even under nonfreezing conditions. These results contribute to our understanding of the functions and origins of antifreeze activity in fish.

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreeze Solution

  • Chang Young-Soo;Yun Won-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권2호
    • /
    • pp.66-75
    • /
    • 2006
  • The effect of antifreeze solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreeze solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation while having small thermal resistance across the film. A porous layer coating technique is adopted to improve the wettability of the antifreeze solution on a parallel plate heat exchanger. The antifreeze solution spreads widely on the heat exchanger surface with $100{\mu}m$ thickness by the capillary force resulted from the porous structure. It is observed that the antifreeze solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by the thin liquid film are only $1{\sim}2%$ compared with those for non-liquid film surface.

Cloning, expression, and activity of type IV antifreeze protein from cultured subtropical olive flounder (Paralichthys olivaceus)

  • Lee, Jong Kyu;Kim, Hak Jun
    • Fisheries and Aquatic Sciences
    • /
    • 제19권8호
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Antifreeze proteins (AFPs) lower the freezing point but not the melting point of aqueous solutions by inhibiting the growth of ice crystals via an adsorption-inhibition mechanism. However, the function of type IV AFP (AFP IV) is questionable, as its antifreeze activity is on the verge of detectable limits, its physiological concentration in adult fish blood is too low to function as a biological antifreeze, and its homologues are present even in fish from tropic oceans as well as freshwater. Therefore, we speculated that AFP IV may have gained antifreeze activity not by selective pressure but by chance. To test this hypothesis, we cloned, expressed, and assayed AFP IV from cultured subtropical olive flounder (Paralichthys olivaceus), which do not require antifreeze protein for survival. Among the identified expressed sequence tags of the flounder liver sample, a 5'-deleted complementary DNA (cDNA) sequence similar to the afp4 gene of the longhorn sculpin was identified, and its full-length cDNA and genome structure were examined. The deduced amino acid sequence of flounder AFP IV shared 55, 53, 52, and 49 % identity with those of Pleuragramma antarcticum, Myoxocephalus octodecemspinosus, Myoxocephalus scorpius, and Notothenia coriiceps, respectively. Furthermore, the genomic structure of this gene was conserved with those of other known AFP IVs. Notably, the recombinant AFP IV showed a weak but distinct thermal hysteresis of $0.07{\pm}0.01^{\circ}C$ at the concentration of 0.5 mg/mL, and ice crystals in an AFP IV solution grew star-shaped, which are very similar to those obtained from other polar AFP IVs. Taken together, our results do not support the hypothesis of evolution of AFP IV by selective pressure, suggesting that the antifreeze activity of AFP IV may have been gained by chance.

Molecular Analysis of Freeze-Tolerance Enhanced by Treatment of Trinexapac-Ethyl in Kentucky Bluegrass

  • Hwang, Cheol Ho
    • 한국작물학회지
    • /
    • 제44권2호
    • /
    • pp.176-179
    • /
    • 1999
  • Trinexapac-ethyl[ 4-(cyclopropyl- $\alpha$ -hydroxy-methylene)-3,5-dioxocyclohexane carboxylic acid ethylester] is a growth-retardant for plants by inhibiting a key step in biosynthesis of GA. A treatment of trinexapacethyl generally induces a reduction in vegetative growth and also inhibits heading. In addition, the trinexapacethyl was known to enhance the freeze-tolerance in annual bluegrass, however, the mechanism is not known yet. One possible reason for the enhanced freeze-tolerance may be the antifreeze protein known to be accumulated in intercellular space of the leaf during cold acclimation. In order to see the possible in-duction of the synthesis of antifreeze proteins by trinexacpacethyl, the apoplastic proteins extracted from Kentucky bluegrass treated with trinexapacethyl were analyzed by SDS-PAGE and the presence of the antifreeze protein was observed. In addition, western analysis showed the identity of the protein induced by both a cold acclimation and a trinexapacethyl treatment. It appears that an enhanced freeze-tolerance of the turf grass by trinexapacethyl is due to the synthesis and/or accumulation of the antifreeze protein similar to the enhanced freeze tolerance induced by cold acclimation.

  • PDF

Immunological Assays of Freezing Tolerance in Barley using Antifreeze Proteins Antisera

  • Sung, Ha-Chang;Kim, Dae-In;Hwang, Cheol-Ho
    • 한국작물학회지
    • /
    • 제48권5호
    • /
    • pp.407-412
    • /
    • 2003
  • In order to measure an antifreezing tolerance, antifreeze proteins accumulated upon cold acclimation in apoplast were analyzed. As Dongborilho were cold-acclimated for 3 to 74 days there was an abrupt increase in apoplastic proteins up to 30 days and then decrease to the similar levels. Among the known antifreeze proteins, CLP produced in E. coli. and TLP purified from apoplast were used to generate antisera that allow to measure and localize the proteins in leaves of barley. The CLP of 27.7 kDa and TLPs of 6, 26, 27, 30, and 31 kDa were increased in their amounts in apoplast as cold treatment being longer. There was a correlation among the amounts of those proteins accumulated in apoplast and freezing tolerance as shown in field and ion leakage tests for five cultivars. The deposit of CLP was localized in the marginal area and the area adjacent to leaf vescular bundle cells in an increasing manner according to duration of cold acclimation but no variation was observed in terms of it's distribution. Based on the close correlation between levels of antifreeze proteins and degrees of freezing tolerance, the immunological methods was to develop to estimate a freezing tolerance in barley.

Characteristics of Antifreeze Protein-1 Induced during Low Temperature Acclimation in the Protaetia brevitarsis (Coleoptera; Cetonidae) Larva

  • Hyung Chul Lee;Chong Myung Yoo
    • Animal cells and systems
    • /
    • 제3권1호
    • /
    • pp.47-52
    • /
    • 1999
  • Change of proteins was confirmed during low temperature acclimation of overwintering larva, and some biochemical characteristics of the induced antifreeze protein-1 (AFP-1) were investigated in Protaetia brevitarsis. As the freezing point depression by the action of induced AFPs, a considerable thermal hysteresis was observed in the haemolymph and in partially purified proteins. AFP-1 was purified from the cold acclimation larvae by ammonium sulfate precipitation ion exchange chromatography, gel permeation chromatography, and electroelution. The purified AFP-1 was determined to be a glycoprotein (approximately 320 kDa, pl 5.8) composed of a single type of subunit (80 kDa). The high contents of hydrophilic amino acids (Asp, Glu, Lys, Asn, Gln, Arg, Ser, Thr) were also confirmed, showing similarity with antifreeze proteins from other insects.

  • PDF

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • 식물조직배양학회지
    • /
    • 제27권4호
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF

구조 생물학을 이용한 Antifreeze protein의 최근 연구동향 (Recent Advances in Structural Studies of Antifreeze Proteins)

  • 이준혁;이성구;김학준
    • Ocean and Polar Research
    • /
    • 제33권2호
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Type I 결빙방지 단백질 조각 이량체의 결빙방지 활성 (Antifreeze Activity of Dimerized Type I Antifreeze Protein Fragments)

  • 김학준
    • 생명과학회지
    • /
    • 제27권5호
    • /
    • pp.584-590
    • /
    • 2017
  • 결빙방지 단백질(Antifreeze protein, AFP)은 얼음 결정에 결합하여 결정의 성장을 억제한다. AFP는 영하의 환경에서 서식하는 생물체의 생존에 필수적이다. 겨울 넙치에서 분리된 type I AFP (AFP37)는 37 개의 잔기를 가진 ${\alpha}$-나선 구조의 펩타이드이다. 본 연구에서는 활성과 수용성이 높은 짧은 AFP 조각을 개발하고자 시도하였다. 아미노-말단 15, 21 잔기의 AFP15와 21를 설계 및 합성하였다. 이들 펩타이드의 아미노-말단에 CGG를 도입한 AFP15N and 21N을 합성하고 이황화 결합을 유도함으로써 이량체 펩타이드인dAFP15N과dAFP21N을 합성하였다. 이들의 나선 함량과 결빙방지 활성을 circular dichroism (CD) 분광법과 나노리터 삼투압계로 각각 측정하였다. 합성된 펩타이드 AFP15 AFP21, AFP15N, AFP21N, dAFP15N, dAFP21N의 나선 구조 함량은 대조구인 AFP37의 49, 41, 23.8, 28, 47.9, 51.7% 수준을 보였다. 이들의 결빙방지 활성은 AFP37의 13, 7, 0.05, 5.6, 13, 11%로 나타났다. 예상과는 달리 이량체화된 펩타이드는 단량체와 비슷한 결빙방지 활성을 보였다. 이는 이량체 펩타이드가 하나의 펩타이드로 얼음과 결합하기 보다 두 개의 개별적 펩타이드로 작용함으로써 단량체와 같은 활성을 보인 것으로 생각된다. 또한 펩타이드들에 의한 별 모양의 얼음 결정 형성은 펩타이드와 얼음의 약한 결합을 시사한다.