• 제목/요약/키워드: Antidromic stimulation

검색결과 9건 처리시간 0.098초

아래팔 내측분지신경의 자극하는 방법에 따른 신경전도검사의 비교 (The Medial Antebrachial Cutaneous Nerve : Orthodromic and Antidromic Conduction Studies)

  • 곽재혁;이동국
    • Annals of Clinical Neurophysiology
    • /
    • 제7권2호
    • /
    • pp.83-87
    • /
    • 2005
  • Background: The study of the medial antebrachial cutaneous nerve (MABCN) is an underused electrodiagnostic tool. But its use is often crucial for assessing mild lower brachial plexus or MABCN lesions, and sometimes for differentiating an ulnar mononeuropathy from a lower brachial plexopathy. This study was designed to know the difference of amplitude and velocity in a stimulation method (orthodromic vs antidromic), side of an arm and sex according by age. Method: MABCN conduction studies were performed orthodromically and antidromically in 90 subjects (42 women and 48 men, ranging from 22 to 79 years of age). We divided subjects into three groups by age (group 1: 20-39 years, group 2: 40-59 years, group 3: 60-79 years). The mean sensory nerve action potential amplitudes and sensory nerve conduction velocities in each group was compared by stimulation method, side of an arm and sex. Result: The amplitudes and velocities made a significant difference between orthodromic and antidromic method in all age groups. At comparison in amplitude and velocity by side of an arm, only amplitude was significantly higher in right arm than left by any stimulation method. The amplitudes and velocities were of no statistically differences in sex except amplitude checked orthodromically in right arm. Conclusion: This study suggests that there is the differences in conduction study of MABCN by stimulation method and side of an arm.

  • PDF

인공와우 이식자에서 Positive Peaked 청신경 복합활동전위 (Positive Peaked Electrically Compound Action Potentials in Cochlear Implant Recipients)

  • 허승덕
    • 말소리와 음성과학
    • /
    • 제1권2호
    • /
    • pp.25-30
    • /
    • 2009
  • Animal experiments have shown that the positive peaked electrically compound action potentials (ECAPs) can be recorded in round window, intracochlear, and nerve trunk by stimulating a monopolar pulse. However, positive peaked ECAPs of cochlear implant recipients have never been reported because ECAPs are recorded from intracochlear electrodes after bipolar stimulation. In our experiment, the positive peaked ECAPs were recorded from 18 intracochlear electrodes in cochlear implant recipients with multiple cochlear anomalies. Thresholds in each channel were measured and the latency of P-, N-wave, and amplitude of P-N were analyzed. These results were identical with the electrically auditory brainstem response (EABR) on the input-output characteristics. In conclusion, the positive peaked ECAPs from the cochlear implant recipients are antidromic ECAPs recorded by perimodiolar electrodes stimulating cochlear implants with multiple anomalies. Therefore, positive peaked ECAPs can be used as useful audiological tools to evaluate the eighth nerve ending.

  • PDF

인공와우 이식자의 역행성 청신경 복합활동전위 (Antidromic Electrically Compound Action Potential in Cochlear Implantees)

  • 허승덕;정성욱;정승현
    • 말소리와 음성과학
    • /
    • 제1권4호
    • /
    • pp.203-207
    • /
    • 2009
  • Electrically evoked compound action potentials (ECAP) have originated from the distal end of the auditory nerve. ECAP are characterized as the difference between the clearly large trough (N) and the following positive peak (P). N-wave occurs around $200-400\;{\mu}s$ after stimulus onset and P-wave at around $400-800\;{\mu}s$. Contrary to expectations, positive peaked ECAP (pp-ECAP) was dominated by a relatively large-amplitude positive following negative peak. pp-ECAP can be recorded from the sites on or near the surgically exposed nerve trunk in animal models and/or in cases of monophasic stimulation. This study will provide the causes of the appearance of pp-ECAP in cases of cochlear implant recipients using imaging studies and medical records and statistically analysis between N-P and P-N on the amplitude input-output function (amp-I/O) for the prediction of the possibilities of clinical tools. Thirteen children participated in the study and received a Cochlear CI-24RE (CA). ECAP was recorded using auto-NRT (Cochlear Ltd., Australia) at four to five weeks post surgery. pp-ECAP was measured from 36 electrodes and typical ECAP from 220 electrodes. There was no abnormality in the imaging study and operation finding in patients with typical ECAP. pp-ECAP was found at the inner ear anormaly and ossification in imaging study and gel-state inner ear fluid was observed in the operation finding. The amplitude of pp-ECAP increased depending on current intensities, but amp-I/O increase more gradually than in the case of typical ECAP (p=0.003). pp-ECAP is antidromic potential which can record from the inner ear anormaly and ossified cochlear. Amp-I/O also depends on current intensity as well typical ECAP. These results provide a useful tool for audiological evaluation for the spiral ganglion cell status to the value of pp-ECAP.

  • PDF

The Electrophysiological Characteristics of Medullospinal Tract Cells in Cat Ventrolateral Medulla

  • Lee, Woo-Yong;Kim, Sang-Jung;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.211-221
    • /
    • 1991
  • Although the existence of nerve cells which determine the activity of sympathetic nervous system in ventrolateral medulla is advocated recently, there are wide varieties on the location and function of them according to authors. Present study aimed to identify and characterize the medullospinal tract cells in rostral and caudal medulla of cats .which branch to the lateral horn of the upper thoracic spinal cord. Cats were anesthetized with ${\alpha}-chloralose$. The upper thoracic spinal cord and floor of the IVth ventricle were exposed. Medullospinal tract cells in rostral and caudal medulla were identified by anti-dromic stimulation of the intermediolateral nucleus in the upper thoracic cord and then the location and physiological characteristics of these cells were studied. A total of seventy cells in medulla had constant latency and responded to high frequency stimulation to thoracic cord. Among them fifty-six cells were identified as medullospinal tract cells either by collision with spontaneous activities or activities evoked by sciatic nerve stimulation(27/56), or by determining the refractory period (29/56). Thirty-one of these cells branched to the contralateral thoracic spinal cord, twenty-one cells to the ipsilateral side and remaining four cells branched to both sides. The conduction velocity of cells branching to the contralateral side was $29{\pm}2.9\;m/sec$ and that of cells to the ipsilateral side was $39.1{\pm}6.0\;m/sec$. When medulla was devided into two by a horizontal plane at 3 mm rostral to the obex, fifty-one among seventy cells were in the rostral medulla and nineteen were in the caudal medulla. The conduction velocities of these two groups were $21.6{\pm}1.0\;and\;33.3{\pm}3.9\;m/sec$, respectively. In this study, we confirmed the existence of two groups of medullospinal tract cells in rostral and caudal ventrolateral medulla, which branch to the lateral horn of thoracic cord and these cells have relatively few spontaneous activities and rapid conduction velocity, so we concluded that these cells are different from the previously known sympatho-related cells in ventrolateral medulla.

  • PDF

Cardiovascular Neurons Mediating Somatosympathetic Reflex in Rostral Ventrolateral Medulla

  • Goo, Yong-Sook;Kim, Sang-Jeong;Kim, Jun;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • 제27권2호
    • /
    • pp.185-197
    • /
    • 1993
  • The rostral ventrolateral medulla (RVLM) includes vasopressor neurons, which transmit activation signals to the intermediolateral nucleus (IML) of the spinal cord, where the preganglionic sympathetic nucleus is located, to raise arterial blood pressure (BP). However, controversy exists as to the possible depressor area in the RVLM and the pathway involved. The present study persued evidence far the location of depressor neurons and the pathway by simultaneously observing changes in BP and the firing rate (FR) of cardiovascular neurons (CVNs) in the RVLM during the somatosympathetic reflex (SSR) elicited by peripheral nerve stimulation, since CVNs are known to contribute to the generation of the sympathetic nerve discharge. In 42 cats, anaesthetized with $\alpha-chloralose$, single unit recording was performed, using carbon filament electrodes inserted into the RVLM, enabling estimation of the post R wave unit histogram (PR-UNlT) and the spike triggered average of sympathetic nerve discharge (STA-SND), allowing identification of CVNs. Antidromic stimulation of spinal $T_2$ segment was followed to determine whether the identified CVN projects axonal endings to the spinal cord (reticulospinal neuron). The sciatic nerve was electrically stimulated at $A\delta-intensity$ (1 mA, 0.1 ms), 1 Hz and C-intensity (10 mA, 0.5 ms), 20 Hz to elicit the depressor, and pressor responses of the SSR, respectively. Simultaneous measurement of CVN firing rate was made. Experimental results are summarized as follows. 1) 20 out of 98 CVNs had axonal projections to the spinal cord and 17 out of 98 CVNs showed FR changes during SSR. 2) Response patterns of FR and BP during SSR were classified into 8 types. 3) These 8 different response patterns could be further classified into those from pressor and depressor neurons. These results demonstrate that some CVNs were identifiable as reticulospinal neurons responding to anti-dromic stimulation and that CVNs operating as depressor neurons as well as pressor neurons exist in the RVLM, both of which are involved with SSR mediation. Therefore, evidence was found that an independent depressor pathway might be involved in the mediation of SSR.

  • PDF

제5효후근을 절단한 백서에서 제5요척수신경의 신경손상이나 전기자극에 의한 기계적 과민통 생성에 있어서 말초 글루타민산 수용기의 역할 (Role of Peripheral Glutamate Receptors to Mechanical Hyperalgesia following Nerve Injury or Antidromic Stimulation of L5 Spinal Nerve in Rats with the Previous L5 Dorsal Rhizotomy)

  • 장준호;남택상;윤덕미;임중우;백광세
    • The Korean Journal of Pain
    • /
    • 제19권1호
    • /
    • pp.33-44
    • /
    • 2006
  • Background: Peripheral nerve injury leads to neuropathic pain, including mechanical hyperalgesia (MH). Nerve discharges produced by an injury to the primary afferents cause the release of glutamate from both central and peripheral terminals. While the role of centrally released glutamate in MH has been well studied, relatively little is known about its peripheral role. This study was carried out to determine if the peripherally conducting nerve impulses and peripheral glutamate receptors contribute to the generation of neuropathic pain. Methods: Rats that had previously received a left L5 dorsal rhizotomy were subjected to a spinal nerve lesion (SNL) or brief electrical stimulation (ES, 4 Hz pulses for 5 min) of the left L5 spinal nerve. The paw withdrawal threshold (PWT) to von Frey filaments was measured. The effects of an intraplantar (i.pl.) injection of a glutamate receptor (GluR) antagonist or agonist on the changes in the SNL- or ES-produced PWT was investigated. Results: SNL produced MH, as evidenced by decrease in the PWT, which lasted for more than 42 days. ES also produced MH lasting for 7 days. MK-801 (NMDAR antagonist), DL-AP3 (group-I mGluR antagonist), and APDC (group-II mGluR agonist) delayed the onset of MH when an i.pl. injection was given before SNL. The same application blocked the onset of ES-induced MH. NBQX (AMPA receptor antagonist) had no effect on either the SNL- or ES-induced onset of MH. When drugs were given after SNL or ES, MK-801 reversed the MH, whereas NBQX, DL-AP3, and APDC had no effect. Conclusions: Peripherally conducting impulses play an important role in the generation of neuropathic pain, which is mediated by the peripheral glutamate receptors.

Electrophysiological Study on Medullospinal Tract Cells Related to Somatosympathetic Reflex in the Cat

  • Kim, Sang-Jeong;Goo, Yong-Sook;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.75-88
    • /
    • 1992
  • It is well established that neurons in ventrolateral medulla play a key role in determining the vasomotor tone. The purpose of present study is to identify sympathetic related, medullospinal tract neurons in ventrolateral medulla and to show that these mediate somato-sympathetic reflex. Medullospinal tract cells were identified by antidromic stimulation to intermediolateral nucleus (IML) of the second thoracic ($T_2$) spinal cord in anesthetized cats. Peripheral nerves were stimulated for orthodromic activation of these cells and peripheral receptive fields were determined. Post R wave histogram of unit and spike triggered averaging of sympathetic nerve discharge (SND) were used to define sympathetic related cell. A total of 113 neurons was recorded in ventrolateral medulla that had the axonal projections to $T_2$ spinal cord. Thirty four of these medullospinal cells showed spontaneous discharges and the others not. Between these two groups, rostro-caudal coordinate of the distribution from obex [$4.7{\pm}0.2\;$ (mean S.E.) mm, 4.1 0.1 mm], depth from dorsal surface ($5.5{\pm}0.2mm,\;4.9{\pm}0.1mm$ and conduction velocity ($9.9{\pm}1.7m/sec,\;16.7{\pm}1.9\;m/sec$) were significantly different (p<0.05). In spontaneously discharging group, characteristics of rostral and caudal groups were significantly different and we demonstrated that cells in rostral group mediate somatosympathetic reflex. From these results, we conclude that a certain portion of spontaneously discharging medullospinal tract cells in rostral ventrolateral medulla comprise the efferent outputs of somatosympathetic reflex to sympathetic preganglion neurons.

  • PDF

고양이의 내측 및 외측 척수망상로 세포의 전기생리학적 비교연구 (A Comparative Study on the Electrophysiological Properties of Medial and Lateral Spinoreticular Tract Cells in Cats)

  • 이석호;전제열;박춘옥;구용숙;김전;성호경
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.181-194
    • /
    • 1990
  • Vasomotor area로 알려져 있던 외측연수망상체는 최근 rostral ventrolateral medulla로 불리 면서 sympathoexcitatory neuron이 집중적으로 분포하는 연수내 부위로서, 체성교감신경반사에 중요한 역할을 하는 것으로 알려지고 있어 이 부위로의 입력정보가 그동안 많은 연구가 되어온 내측 척수망상로 세포와 어떤 차이를 보이는가를 규명하고자 하였다. 1) Medial SRT 세포는 34 cell중 약 60%가 동측으로 향하였으나, lateral SRT cell의 경우 47 cell의 약 60%가 반대측으로 향하였다. 2) 각 군의 세포를 말초자극에 대한 반응성에 따라, LT cell, Deep cell, HT cell및 WDR cell로 나누었으며 유해자극을 전달하는 세포를 HT와 WDR cell이라 하고, 무해자극을 전달하는 세포와 유해자극을 전달하는 세포의 비율로 볼 때, 다른 부위에 비하여 rostral VLM에 유해자극정보가 비교적 많이 전달됨을 볼 수 있었다. 3) 평균 전도 속도는 각 군간에 유의한 차이가 없었으나, Deep cell은 HT cell보다 유의하게 빠른 전도속도를 보였다. 4) Medial SRT 세포는 척수 회백질 내에서 Rexed laminae VII및 VIII에 주로 분포하며, LRN projecting SRT cell의 경우엔 전 lamina에 걸쳐 고루 분포하였다. 이상의 결과는 내측 및 외측 망상체간의 말초 입력 정보의 차이를 보여주고 있으며, 연수 망상체의 세 부위중 특히 rostral ventrolateral medulla로 많은 동통정보가 입력되고 있어 RVLM의 기능중 하나인 체성교감반사의 통합과 연관된 역할을 하리라 기대된다.

  • PDF

흰쥐 안면신경핵 세포의 전기생리학적 및 형태학적 특성 (ELECTROPHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERISTICS OF FACIAL NUCLEUS IN RAT)

  • 최병주;조진화;배용철;김영진
    • 대한소아치과학회지
    • /
    • 제27권3호
    • /
    • pp.400-409
    • /
    • 2000
  • 흰쥐의 안면신경핵을 구성하는 신경세포들의 시냅스 연결 양태 및 세포막 특성을 규명하기 위해 in vivo 필드전위 및 세포 내 전위 측정법을 이용하여 전기생리적 반응을 관찰하였다. 말초 안면신경 분지를 역행성으로 전기자극시 자극세기에 비례하여 전위의 크기가 증가되었고 필드 전위의 양태는 두 가지 반응으로 나타났는데 전기자극 직후 1ms 부근에서 정점을 나타내는 양태와 이와 더불어 $7\sim8ms$ 부근에서 후기 정점을 동반하는 양태가 있었다. 안면신경핵은 염색시 내측, 배외측, 중간측 및 외측등 4부분의 소핵으로 구분되었다. Neurobiotin으로 채워진 단일 신경세포를 형태학적으로 재구축하였는데 세포체는 추체형태를 나타내었고 주 수상돌기는 모든 방향으로 뻗어져 있었고 각 수상돌기의 영역은 해당 소핵 내에 한정되어 있었다. 일련의 과분극 전류 $(-1.2\sim+1.2nA)$를 세포내에 가하였을 때 동반되는 세포내 전위변화를 입력저항 값으로 계산하였을 때 그 기울기가 직선형으로 나타났다. 탈분극 전류를 세포내 주입시 지속적인 활동성 전위가 나타났으며 전류의 크기에 비례하여 각 전위의 개수가 증가하였고 spike-빈도 적응 현상이 나타났다. 그러나 시간 의존성 내향성 정류현상은 관찰되지 않았고 anodal break excitation이 나타났다. 이상의 실험결과로 보아 안면신경핵을 구성하고 있는 세포들 사이의 시냅스는 다양한 형태로 존재할 가능성이 있다고 사료되며 이들 시냅스간의 변화를 통하여 안면 신경마비, 반쪽 안면 경련, hypoglossal-facial anastomosis등에서 나타날 수 있는 임상적 신경성 증상 기전을 설명할 수 있을 것으로 여겨진다.

  • PDF