• Title/Summary/Keyword: Antibiotic resistance

Search Result 887, Processing Time 0.023 seconds

A Study on Changes in Antimicrobial Resistant Staphylococcus aureus from Wound Isolates in a South Korean University Hospital for the Past 10 Years (2006, 2016) (최근 10년 동안 일개 대학병원 상처 배양에서 분리된 포도알균의 항생제 내성 변화 연구)

  • Hong, Seong-No;Kim, Joon;Sung, Hyun-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.335-342
    • /
    • 2016
  • Staphylococcus aureus, which is generally susceptible to the involvement route in community, is mostly MSSA. However, CA-MRSA is recently increased. Abuse of antibiotics and glycopeptides may increase VISA and VRSA. This study was conducted to investigate the changes on the antibiotic resistance prevalence and antibiotic susceptibility patterns of Staphylococcus aureus isolated from the wound of patients in a university hospital for the past 10 years. This study showed that antibiotic resistance was higher in males than in females; moreover, the antibiotic resistance rates increased with age. The resistance rate for penicillin, oxacillin, erythromycin, gentamicin, clindamycin, tetracycline, ciprofloxacin, fusidic acid, trimethoprim/sulfamethoxazole, clindamycin, and rifampicin was, respectively, 97.7%, 60.5%, 57.4%, 48.8%, 41.1%, 44.2%, 44.2%, 14.7%, 13.2% and 3.9% in 2006. The resistance rate for penicillin, oxacillin, erythromycin, gentamicin, clindamycin, tetracycline, ciprofloxacin, fusidic acid, trimethoprim/sulfamethoxazole, fusidic acid, clindamycin, and rifampicin was, respectively 95.9%, 62.6%, 55.7%, 28.6%, 50.3%, 34.7%, 38.8%, 34.0%, 2.7% and 8.2% in 2016. Vancomycin, linezolid, quinupristin/dalfopristin, and teicoplanin exhibited 100% in antibiotic susceptibility. In particular, fusidic acid resistance was increased by 19.3% in 2016. Compared with 2006, the decreased point, 12.4% was susceptible and was statistically significant. Therefore, this study suggests that periodic review and understanding of microbial and antibiotic changes should continue to investigate appropriate antibiotic susceptibility.

EVALUATION OF MICROBIAL RISK IN SOIL AMENDED WITH ORGANIC FERTILIZERS FROM STABILIZED SWINE MANURE WASTE

  • Han, Il;Lee, Young-Shin;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.129-135
    • /
    • 2007
  • This study evaluated microbial risk that could develop within soil microbial communities after amended with organic fertilizers from stabilized swine manure waste. For this purpose, we assessed the occurrences and competitiveness of antibiotic resistance and pathogenicity in soil microbial communities that were amended with swine manure wastes stabilized by a traditional lagoon fermentation process and an autothermal thermophilic aerobic digestion process, respectively. According to laboratory cultivation detection analysis, soil applications of the stabilized organic fertilizers resulted in increases in absolute abundances of antibiotic resistant bacteria and of two tested pathogenic bacteria indicators. The increase in occurrences might be due to the overall growth of microbial communities by the supplement of nutrients from the fertilizers. Meanwhile, the soil applications were found to reduce competitiveness for various types of antibiotic resistant bacteria in the soil microbial communities, as indicated by the decrease in relative abundances (of total viable heterotrophic bacteria). However, competitiveness of pathogens in response to the fertilization was pathogens-specific, since the relative abundance of Staphylococcus was decreased by the soil applications, while the relative abundance of Salmonella was increased. Further testes revealed that no MAR (multiple antibiotic resistance) occurrence was detected among cultivated pathogen colonies. These findings suggest that microbial risk in the soil amended with the fertilizers may not be critical to public health. However, because of the increased occurrences of antibiotic resistance and pathogenicity resulted from the overall microbial growth by the nutrient supply from the fertilizers, potential microbial risk could not be completely ruled out in the organic-fertilized soil samples.

Plasmid Sequence Data Analysis to Investigate Antibiotic Resistance Gene Transfer among Swine, Swine Farm and Their Owners (돼지와 양돈장 및 농장 관계자 간에 발생하는 항생제 내성 유전자 전파 조사를 위한 플라스미드 염기서열 분석)

  • Yujin Jeong;Sunwoo Lee;Jung Sik Yoo;Dong-Hun Lee; Tatsuya Unno
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.269-278
    • /
    • 2023
  • Antibiotics either kill or inhibit the growth of bacteria. However, antibiotic-resistant bacteria are difficult to treat with antibiotics. Infections caused by such bacteria often lead to severe diseases. Antibiotic resistance genes (ARG) can be horizontally transmitted across different bacterial species, necessitating a comprehensive understanding of how ARGs spread across various environments. In this study, we analyzed the plasmid sequences of 33 extended-spectrum beta-lactamases (ESBL) producing Escherichia coli isolated from pigs, farms, and their owners. We conducted an antibiotic susceptibility test (AST) with aztreonam and seven other antibiotics, as well as whole genome sequencing (WGS) of the strains using MinION. Our results demonstrated that the plasmids that did not harbor ARGs were mostly non-conjugative, whereas the plasmids that harbored ARGs were conjugative. The arrangement of these ARGs exhibited a pattern of organization featuring a series of ARG cassettes, some of which were identical across the isolates collected from different sources. Therefore, this study suggests that the sets of ARG cassettes on plasmids were mostly shared between pigs and their owners. Hence, enhanced surveillance of ARG should be implemented in farm environments to proactively mitigate the risk of antibiotic-resistant bacterial infections.

Convergence Study of Antimicrobial Resistance of Escherichia coli Isolated from Cheonho Reservoir in Cheonan (천안 천호지에서 분리한 대장균의 항생제 내성에 관한 융합연구)

  • Lee, Jin Kyung;Lee, Young ki;Yuk, Young Sam;Kim, Ga-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.141-149
    • /
    • 2017
  • This study was to investigate the sanitary microbiological aspects of Cheonho Reservoir and its antibiotic resistance in the natural environment to contribute to the public healthcare improvement. Groups of coliforms, were counted at three sites of the Cheonho Reservoir in July and September 2013, and the isolates were identified according to the water pollution process test standards. Antibiotic resistance was evaluated using the Korea National Institute of Health's standard antibiotic susceptibility test. The average coliform counts in Cheonho Reservoir were $2.0{\times}10^3CFU/mL$, 41% of which were identified as Escherichia coli(E. coli). Antibiotic resistance rate in E. coli isolated from Cheonho reservoir was highest in Ampicillin 31.3%, Ticarcillin 25.0%, Cefaxolin and Cefoxitin 18.8% respectively. Convergence multiple resistance patterns, 38,5% presented resistance to 4 durgs, 6 drugs resistance were 7.7%. The more than 2 drugs resistance were 92.3%. Cheonho Reservoir is a public park that accessible to the citizens, further convergence studies are needed to develop sanitary microbiological management practices and study antibiotic resistance of the reservoir.

NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes

  • Park, Ye-Lim;Choi, Tae-Rim;Kim, Hyun Joong;Song, Hun-Suk;Lee, Hye Soo;Park, Sol Lee;Lee, Sun Mi;Kim, Sang Hyun;Park, Serom;Bhatia, Shashi Kant;Gurav, Ranjit;Sung, Changmin;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2021
  • Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.

Effects of Essential oils of Several Aromatic Plants on the Growth of Antibiotic Resistant Staphylococcus aureus SA2 (몇몇 식물 정유성분이 항생제내성균주 Staphylococcus aureus SA2의 성장에 미치는 영향)

  • 문경호;서봉수;김혜경;박민수;이정규
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.27-29
    • /
    • 2004
  • The essential oil fractions from six plant parts including leaf of Zanthoxylum piperitum and flower of Lindera obtusiloba have revealed to possess resistance inhibitory activity on antibiotic resistant Staphylococcus aureus SA2 when combined with ohloramphenicol (Cm). The combination of Cm and essential oil mixtures showed potent resistance inhibition in the level of 10∼20 $\mu\textrm{g}$/ml.

In Vitro Susceptibility of Diarrhea-Causing Escherichia coli to 9 Antibacterial Agents in Clinical Use (최근 분리된 장내 병원성 대장균의 항균제 감수성)

  • Kim, Jai-Ho;Kim, Kyung-Hee;Cho, Yaug-Ja;Suh, Inn-Soo
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.2
    • /
    • pp.155-162
    • /
    • 1987
  • To determine the prevalence of antibiotic resistance in fecal E. coli and to investigate possible associations between antibiotic resistance and other plasmid-mediated virulence properties, antibiotic disk susceptibility tests for nine antibiotics were done on 141 strains of E. coli isolated from diarrheal children and well controls. Eighty two percent of the test strains were resistant to one or more antibiotics. Antibiotics to which the test strains were most resistant in descending order were ampicillin (85%), trimethoprim/sulfamethoxazol (60%), and cephalothin (55%). Seventy nine percent of these resistant strains were resistant to two or more antibiotics. All 141 test strains were sorted into enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroadherent E. coli (EAEC) and non-pathogenic E. coli and the percentages of strains resistant to multiple antibiotics were compared. Among ETEC regardless of its source, multiple drug resistance was more frequent in strains producing heatstable enterotoxin (ST) only than in strains producing only heat-labile enterotoxin (LT) or both. In EAEC, multiple resistance was more frequently associated with strains isolated from diarrheal patients than with those from well controls. The major antibiotic resistance patterns possessed by multiple resistant enteropathogenic strains were $SXT^R$ $AM^R$, $CR^R$, and $SXT^R$ $AM^R$ $CR^R$. Of 28 ST- producing $SXT^R$ ETEC, 26(96%) were also resistant to ampicillin and 17 (61%) were resistant to cephalothin. The similar pattern was observed in EAEC and EPEC as well. This study has important implications for the treatment of E. coli diarrhea with antibiotics because it is possible that dissemination of virulence could occur under the force of selective antibiotic pressure. In addition, this study suggests that the in vivo efficacy of SXT in treating diarrheal illness be reevaluated.

  • PDF

Antibiotic Reversal Activity of Piper longum Fruit Extracts against Staphylococcus aureus Multi-Drug Resistant Phenotype

  • Maryam Salah Ud Din;Umar Farooq Gohar;Hamid Mukhtar;Ibrar Khan;John Morris;Soisuda Pornpukdeewattana;Salvatore Massa
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.432-440
    • /
    • 2023
  • Irrational and injudicious use of antibiotics, easy availability of them as over-the-counter drugs in economically developing countries, and unavailability of regulatory policies governing antimicrobial use in agriculture, animals, and humans, has led to the development of multi-drug resistance (MDR) bacteria. The use of medicinal plants can be considered as an alternative, with a consequent impact on microbial resistance. We tested extracts of Piper longum fruits as new natural products as agents for reversing the resistance to antibiotics. Six crude extracts of P. longum fruits were utilized against a clinical isolate of multidrug-resistant Staphylococcus aureus.The antibiotic susceptibility testing disc method was used in the antibiotic resistance reversal analysis. Apart from cefoxitin and erythromycin, all other antibiotics used (lincosamides [clindamycin], quinolones [levofloxacin and ciprofloxacin], and aminoglycosides [amikacin and gentamicin]) were enhanced by P. longum extracts. The extracts that showed the greatest synergy with the antibiotics were EAPL (ethyl acetate [extract of] P. longum), n-BPL (n-butanol [extract of] P. longum), and MPL (methanolic [extract of] P. longum The results of this study suggest that P. longum extracts have the ability to increase the effectiveness of different classes of antibiotics and reverse their resistance. However, future studies are needed to elucidate the molecular mechanisms behind the synergy between antibiotic and phytocompound(s) and identify the active biomolecules of P. longum responsible for the synergy in S. aureus.

Genomic Characterization and Safety Assessment of Bifidobacterium breve BS2-PB3 as Functional Food

  • Kristin Talia Marbun;Marcelia Sugata;Jonathan Suciono Purnomo;Dikson;Samuel Owen Mudana;Tan Tjie Jan;Juandy Jo
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.871-879
    • /
    • 2024
  • Our group had isolated Bifidobacterium breve strain BS2-PB3 from human breast milk. In this study, we sequenced the whole genome of B. breve BS2-PB3, and with a focus on its safety profile, various probiotic characteristics (presence of antibiotic resistance genes, virulence factors, and mobile elements) were then determined through bioinformatic analyses. The antibiotic resistance profile of B. breve BS2-PB3 was also evaluated. The whole genome of B. breve BS2-PB3 consisted of 2,268,931 base pairs with a G-C content of 58.89% and 2,108 coding regions. The average nucleotide identity and whole-genome phylogenetic analyses supported the classification of B. breve BS2-PB3. According to our in silico assessment, B. breve BS2-PB3 possesses antioxidant and immunomodulation properties in addition to various genes related to the probiotic properties of heat, cold, and acid stress, bile tolerance, and adhesion. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk-diffusion test, in which the minimum inhibitory concentrations for selected antibiotics were subsequently tested using the Epsilometer test. B. breve BS2-PB3 only exhibited selected resistance phenotypes, i.e., to mupirocin (minimum inhibitory concentration/MIC >1,024 ㎍/ml), sulfamethoxazole (MIC>1,024 ㎍/ml), and oxacillin (MIC >3 ㎍/ml). The resistance genes against those antibiotics, i.e., ileS, mupB, sul4, mecC and ramA, were detected within its genome as well. While no virulence factor was detected, four insertion sequences were identified within the genome but were located away from the identified antibiotic resistance genes. In conclusion, B. breve BS2-PB3 demonstrated a sufficient safety profile, making it a promising candidate for further development as a potential functional food.

Virulence and antimicrobial resistance genes of pathogenic Escherichia coli from piglets showing diarrhea before and after ban on antibiotic growth promoters in feed (사료 첨가 항생제 금지 전후 돼지 설사증 유래 대장균의 병원성 인자 및 항생제 내성 유전자)

  • Do, Kyung-Hyo;Byun, Jae-Won;Lee, Wan-Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.3
    • /
    • pp.163-171
    • /
    • 2020
  • This study examined the prevalence of adherence factors, toxin genes, antimicrobial resistance phenotypes, and resistance genes in Escherichia coli (E. coli) isolated from piglets with diarrhea before and after the ban on antibiotic growth promoters (AGPs) in Korea from 2007 to 2018. In this period, pathogenic 474 E. coli isolates were obtained from diarrheic piglets. The virulence factors and antimicrobial resistance genes were assayed using a polymerase chain reaction, and the susceptibility to antibiotics was tested according to the Clinical and Laboratory Standards Institute guidelines. After the ban on AGPs, the frequency of F4 (12.5% to 32.7%) increased significantly, and LT (31.9% to 20.3%) and EAST-I (46.5% to 35.2%) decreased significantly. In addition, the resistance to streptomycin (45.8% to 67.9%), cephalothin (34.0% to 59.4%), and cefazlin (10.4% to 28.8%) increased significantly. Colistin resistance plasmid-mediated genes, mcr-1 and mcr-3, were detected after the ban on AGPs. The results of this study can provide useful data for analyzing the impact of the ban on AGPs on the virulence profiles and antimicrobial resistance of E. coli isolated from piglets with diarrhea in Korea.