• Title/Summary/Keyword: Antibiotic production

Search Result 462, Processing Time 0.028 seconds

Identification and Antifungal Antagonism of Chryseomomas luteola 5042 against Phytophthora capsici (고추역병균 Phytophthora capsici의 생육을 저해하는 Chryseomonas luteola 5042의 선발과 항진균성 길항작용)

  • 윤경현;이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.186-193
    • /
    • 2001
  • A powerful antagonistic bacterium against Phytophthora capsici causing phytophthora blight of red pepper was isolated from the cultivated soil in Kyongju Korea, The bilogical control mechanisms of the isolated strain were caused by strong antifungal antibiotic, siderophore and cellulase. The strain was identified as Chryseomonas luteola by the cultural morphological and physiological characteristics. The opti- mal culture medium for the antibiotic production was determined as follows : 0.15%D(+) cellobiose, 0.55% $NH_4$CI, 0.01% KCI 0.7% $K_2$$HPO_4$ 0.2% $KH_2$PO$_4$ and 0.5% sodium citrate at pH 7.0 The optimal incubation time was 84 hours at $30^{\circ}C$ In pot bioassay, the treatment of C luteola 5042 protected red pepper plant against the blight of Phytophthora capsici.

  • PDF

Microbial composition in different gut locations of weaning piglets receiving antibiotics

  • Li, Kaifeng;Xiao, Yingping;Chen, Jiucheng;Chen, Jinggang;He, Xiangxiang;Yang, Hua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Objective: The aim of this study was to examine shifts in the composition of the bacterial population in the intestinal tracts (ITs) of weaning piglets by antibiotic treatment using high-throughput sequencing. Methods: Sixty 28-d-old weaning piglets were randomly divided into two treatment groups. The Control group was treated with a basal diet without antibiotics. The Antibiotic group's basal diet contained colistin sulfate at a concentration of 20 g per ton and bacitracin zinc at a concentration of 40 g per ton. All of the pigs were fed for 28 days. Then, three pigs were killed, and the luminal contents of the jejunum, ileum, cecum, and colon were collected for DNA extraction and high-throughput sequencing. Results: The results showed that the average daily weight gain of the antibiotic group was significantly greater (p<0.05), and the incidence of diarrhea lower (p>0.05), than the control group. A total of 812,607 valid reads were generated. Thirty-eight operational taxonomic units (OTUs) that were found in all of the samples were defined as core OTUs. Twenty-one phyla were identified, and approximately 90% of the classifiable sequences belonged to the phylum Firmicutes. Forty-two classes were identified. Of the 232 genera identified, nine genera were identified as the core gut microbiome because they existed in all of the tracts. The proportion of the nine core bacteria varied at the different tract sites. A heat map was used to understand how the numbers of the abundant genera shifted between the two treatment groups. Conclusion: At different tract sites the relative abundance of gut microbiota was different. Antibiotics could cause shifts in the microorganism composition and affect the composition of gut microbiota in the different tracts of weaning piglets.

Effect of Green Tea By-product on Performance and Body Composition in Broiler Chicks

  • Yang, C.J.;Yang, I.Y.;Oh, D.H.;Bae, I.H.;Cho, S.G.;Kong, I.G.;Uuganbayar, D.;Nou, I.S.;Choi, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.867-872
    • /
    • 2003
  • This experiment was conducted to determine the optimum level of green tea by-product (GTB) in diets without antibiotics and to evaluate its effect on broiler performances. A total of 140 Ross broilers were kept in battery cages for a period of 6 weeks. Dietary treatments used in this experiment were antibiotic free group (basal diet as a control), antibiotic added group (basal+0.05% chlortetracycline), GTB 0.5% (basal+GTB 0.5%), GTB 1% (basal+GTB 1%) and GTB 2% (basal+GTB 2%). Antibiotic added group showed significantly higher body weight gain than other treatments (p<0.05). However, no significant differences were observed in feed intake and feed efficiency among treatments (p>0.05). The addition of green tea by-product to diets tended to decrease blood LDL cholesterol content compared to control group although there were no significant differences among treatments (p>0.05). Addition of green tea by-product increased docosahexaenoic acid (DHA) in blood plasma and tended to decrease cholesterol content in chicken meat, but a significant difference was not observed (p>0.05). The values of TBA in chicken meat decreased in groups fed diets with green tea-by product and antibiotics compared to control group (p<0.05). The crude protein content in chicken meat was decreased slightly in treatments with green tea by-product and antibiotics supplementation. The abdominal fat was increased in chickens fed with diets with green tea by-product compared to the control (p<0.05).

Effects of Dietary Enterococcus faecium SF68 on Growth Performance, Nutrient Digestibility, Blood Characteristics and Faecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Son, K.S.;Kim, I.H.;Kim, S.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.406-411
    • /
    • 2006
  • The objective of this study was to investigate the effects of feeding probiotic (Enterococcus faecium SF68, EF) on growth performance, nutrient digestibility, blood characteristics and faecal noxious gas content in finishing pigs. A total of eighty [($Landrace{\times}Yorkshire$)${\times}Duroc$] pigs with an initial BW of $50.47{\pm}2.13kg$ were used in this 8-week experiment. Pigs were allotted to four treatments (4 replicates per treatment and 5 pigs per pen) according to a randomized complete block design. Dietary treatments were: 1) CON (control; basal diet), 2) CTC (control diet+0.1% antibiotic, chlortetracycline), 3) EF1 (control diet+0.1% probiotic, EF) and 4) EF2 (control diet+0.2% probiotic, EF). During weeks 0-4, ADG was not affected by the addition of antibiotic or EF (p>0.05). In weeks 4-8, ADG tended to increase in CTC and EF treatments compared to CON treatment (p<0.10). ADFI and gain/feed were not affected in each 4-week period and the entire experimental period (p>0.05). Digestibilities of DM and N were higher in EF supplemented treatments than in CON and CTC treatments (p<0.05). Blood characteristics of WBC, RBC and lymphocyte were not affected in pigs given diets containing EF (p>0.05). Supplementation of EF in the diet decreased faecal ammonia nitrogen ($NH_3$-N) and hydrogen sulphide ($H_2S$) concentrations (p<0.05). Faecal acetic acid concentration tended to decrease (p<0.10) while propionic acid and butyric acid concentrations were significantly lower on diets with EF supplementation than on the diet containing antibiotic (p<0.05). In conclusion, dietary supplementation of EF can increase nutrient digestibility and decrease faecal $NH_3$-N, $H_2S$ and volatile fatty acid (VFA) concentrations in finishing pigs.

Screening of Anti-Adhesion Agents for Pathogenic Escherichia coli O157:H7 by Targeting the GrlA Activator

  • Sin Young Hong;Byoung Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.329-338
    • /
    • 2023
  • Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.

The effect of Acacia nilotica bark extract on growth performance, carcass characteristics, immune response, and intestinal morphology in broilers as an alternative to antibiotic growth promoter

  • Muhammad Umer Zahid;Anjum Khalique;Shafqat Nawaz Qaisrani;Muhammad Ashraf;Ali Ahmad Sheikh;Muhammad Umar Yaqoob
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1059-1066
    • /
    • 2023
  • Objective: Present study was designed to evaluate the efficacy of Acacia nilotica bark extract as an alternative to antibiotic growth promoters in broilers. Methods: Six hundred, day-old broiler chicks were randomly divided into six groups (NC, without any supplementation; AB, NC+Zinc Bacitracin; PB, NC+Safmannan; ANBE1, NC+A. nilotica bark extract 0.1%; ANBE3, NC+A. nilotica bark extract 0.3%; ANBE5, NC+A. nilotica bark extract 0.5%), with ten replicates per group (10 chicks/replicate) and feeding trial was lasted for 35 days. Results: Results showed that weight gain (1,296.63 g) and feed conversion ratio (FCR, 1.59) of AB was better than NC, during the finisher phase. Overall FCR of AB (1.53), PB (1.54), and ANBE5 (1.54) was significantly (p<0.05) better than NC. From carcass parameters relative weight of wing and heart were highest in ANBE3 (2.5% and 1.51%, respectively). Significantly (p<0.05) highest blood glucose level was observed in NC (264.5 mg/dL) and highest albumin concentration was found in AB (1.46 mg/dL). In addition, antibody titer levels against ND and IBD were higher in ANBE5 than NC, while higher relative weight of bursa was observed in ANBE3 than NC. The villus height to crypt depth ratio in all experimental groups was better than NC. Conclusion: Acacia nilotica bark extract could be a suitable alternative to antibiotic growth promoters to support the growth in broilers.

Lipase Activity and Tacrolimus Production in Streptomyces clavuligerus CKD 1119 Mutant Strains

  • Kim, Hyung-Soo;Park, Young-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1638-1644
    • /
    • 2007
  • The effect of carbon sources on tacrolimus production by a mutant strain of Streptomyces clavuligerus CKD 1119, an isolate from soil, was examined. Among the carbohydrates and oils tested in this work, a mixed carbon source of soluble starch and com oil was the best. An analysis of the culture kinetics also showed that, in contrast to the carbohydrates, the com oil was consumed later in the antibiotic production phase, implying that the oil substrate was the principal carbon source for the biosynthesis of tacrolimus, and this was directly proven by experiments using $^{14}C$-glucose and $^{14}C$-oleate substrates. Furthermore, com oil induced the formation of lipase by the mutant strain, whereas the addition of glucose significantly repressed lipase activity. The lipase activity exhibited by the FK-506-overproducing mutants was also observed to be directly proportional to their tacrolimus yield, indicating that a high lipase activity is itself a crucial factor for tacrolimus production. A feasibility study with a 200-1 pilot-scale fermentor and the best strain (Tc-XII-15322) identified in this work revealed a high volumetric and specific productivity of about 495 mg/l and 0.34 mg/mg dry mycelium, respectively.

Recent advances in dairy goat products

  • Sepe, Lucia;Arguello, Anastasio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1306-1320
    • /
    • 2019
  • Goat population world-wide is increasing, and the dairy goat sector is developing accordingly. Although the new technology applied to the goat industry is being introduced slowly because the weight of traditional subsector in the dairy sector, considerable advances have been made in the last decade. Present review focuses on the emerging topics in the dairy goat sector. Research and development of traditional and new dairy goat products are reviewed, including the new research in the use of goat milk in infant formula. The research in alternatives to brine, production of skimmed goat cheeses and the use of different modified atmosphere packaging are also addressed. Special attention is given to antibiotic residues and their determination in goat milk. Functional foods for human benefits are a trending topic. Health properties recently discovered in dairy goat products are included in the paper, with special attention to the antioxidant activity. The dual-purpose use of goats by humankind is affecting the way of how new technology is being incorporated in the dairy goat sector and will certainly affect the future development of dairy goat products.

Dapsone modulates lipopolysaccharide-activated bone marrow cells by inducing cell death and down-regulating tumor necrosis factor-α production

  • Kwon, Min-Ji;Joo, Hong-Gu
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.744-749
    • /
    • 2018
  • Dapsone, an antibiotic, has been used to cure leprosy. It has been reported that dapsone has anti-inflammatory activity in hosts; however, the anti-inflammatory mechanism of dapsone has not been fully elucidated. The present study investigated the anti-inflammatory effects of dapsone on bone marrow cells (BMs), especially upon exposure to lipopolysaccharide (LPS). We treated BMs with LPS and dapsone, and the treated cells underwent cellular activity assay, flow cytometry analysis, cytokine production assessment, and reactive oxygen species assay. LPS distinctly activated BMs with several characteristics including high cellular activity, granulocyte changes, and tumor necrosis factor alpha ($TNF-{\alpha}$) production increases. Interestingly, dapsone modulated the inflammatory cells, including granulocytes in LPS-treated BMs, by inducing cell death. While the percentage of Gr-1 positive cells was 57% in control cells, LPS increased that to 75%, and LPS plus dapsone decreased it to 64%. Furthermore, dapsone decreased the mitochondrial membrane potential of LPS-treated BMs. At a low concentration ($25{\mu}g/mL$), dapsone significantly decreased the production of $TNF-{\alpha}$ in LPS-treated BMs by 54%. This study confirmed that dapsone has anti-inflammatory effects on LPS-mediated inflammation via modulation of the number and function of inflammatory cells, providing new and useful information for clinicians and researchers.

Acyl Homoserine Lactone in Interspecies Bacterial Signaling

  • Kanojiya, Poonam;Banerji, Rajashri;Saroj, Sunil D.
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Bacteria communicate with each other through an intricate communication mechanism known as quorum sensing (QS). QS regulates different behavioral aspects in bacteria, such as biofilm formation, sporulation, virulence gene expression, antibiotic production, and bioluminescence. Several different chemical signals and signal detection systems play vital roles in promoting highly efficient intra- and interspecies communication. Gram-negative bacteria coordinate gene regulation through the production of acyl homoserine lactones (AHLs). Gram-positive bacteria do not code for AHL production, while some gram-negative bacteria have an incomplete AHL-QS system. Despite this fact, these microbes can detect AHLs owing to the presence of LuxR solo receptors. Various studies have reported the role of AHLs in interspecies signaling. Moreover, as bacteria live in a polymicrobial community, the production of extracellular compounds to compete for resources is imperative. Thus, AHL-mediated signaling and inhibition are considered to affect virulence in bacteria. In the current review, we focus on the synthesis and regulation mechanisms of AHLs and highlight their role in interspecies bacterial signaling. Exploring interspecies bacterial signaling will further help us understand host-pathogen interactions, thereby contributing to the development of therapeutic strategies intended to target chronic polymicrobial infections.