• 제목/요약/키워드: Antibiotic production

검색결과 462건 처리시간 0.029초

Development of Doxorubin Overproducing Streptomyces Using Protoplast Regeneration

  • 박희섭;박현주;김응수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.533-538
    • /
    • 2003
  • To establish an effective and reliable technique of mutation by protoplast regeneration in doxorubicin overproducing industrial strain, it is essential to optimize the conditions for protoplast regeneration. $CaCO_3$ as buffer, the negative effect of glucose was still evident without significant changes in pH, ruling out acidity as responsible for the suppression of anthracycline production and suggesting a direct effect of glucose on antibiotic biosynthesis. Production of doxorubicin was improved in doxorubicin overproducing industrial strain (BR-Dox) when protoplast regenerated. BR-Dox4 and BR-Dox6 of BR-Dox derivatives improved doxorubicin production by 25.2 % and 12.2 %, respectively.

  • PDF

Production of Elaiophylin by the Strain MCY-846 in a Submerged Culture

  • Lee, Sang-Yong;Ha, Sang-Chul;Hong, Young-Soo;Hong, Soon-Duck;Lee, Jung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.278-281
    • /
    • 1997
  • Streptomyces sp. MCY-846 selected by in vitro cytotoxicity assay produced elaiophylin. Individual characteristics of the strains such as spore morphology, and physiological characteristics indicated that the strain is resembled to Streptomyces hygroscopicus. The time course of cell growth and antibiotic production was observed in the medium containing 0.5% trehalose and 0.5% soybean meal as carbon and nitrogen sources, respectively. The optimum production of elaiophylin was tested with different combinations of carbon and nitrogen sources and reached a maxima of $470{\mu}$/ml in the PC-II medium.

  • PDF

Plasmid Linkage of Bacteriocin Production and Sucrose Fermentation Phenotypes in Pediococcus acidilactici M

  • Kim, Wang-June;Ha, Duk-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권3호
    • /
    • pp.169-175
    • /
    • 1991
  • Pediococcus acidilactici strain M produced a bacteriocin which was proteinaceous, heat stable, and exhibited antimicrobial activity against lactic acid bacteria, variety of food spoilage and pathogenic bacteria. The antimicrobial activity was not caused by $H_2$$O_2$ and organic acid, and was remained between pHs of 4.0 to 9. Molecular weight of crude bacteriocin was approximately 2, 500. Phenotypic assignment after plasmid cruing experiment demonstrated that a 53.7 kilobase (kb) plasmid, designated as pSUC53, was responsible for the sucrose fermentation phenotype ($Suc^+$) and a 11.1 kb plasmid, designated as pBAC11, was associated with bacteriocin production phenotype ($Bac^+$). Neither of the two plasmids were linked to antibiotic resistance.

  • PDF

Sisomicin발효에 대한 탄소원의 영향과 Glucose에 의한 조절효과 (Effects of Various Carbon Sources and Carbon Catabolite Regulation in Sisomicin Fermentation)

  • 안병우;이상한;신철수
    • 한국미생물·생명공학회지
    • /
    • 제14권4호
    • /
    • pp.293-298
    • /
    • 1986
  • Micromonospora inyoensis 균주에 의한 sisomicin의 발효에서 항생물질의 생산성에 대한 여러 가지 탄소원의 영향을 batch culture를 이용하여 검토하였다. Starch, dextrin 및 maltose는 sisomicin의 생산에 좋은 탄소원으로 밝혀졌으나, glucose가 사용되었을 때 sisomicin 생산성은 carbon catabolite regulation에 기인하여 그게 감소되었다. 한편 sisomicin생합성에 대한 carbon catabolite regulation은 catabolite inhibition효과보다 주로 catabolite repression 효과에 좌우되었다.

  • PDF

Improvement of Bacilysin Production in Bacillus subtilis by CRISPR/Cas9-Mediated Editing of the 5'-Untranslated Region of the bac Operon

  • Hadeel Waleed Abdulmalek;Ayten Yazgan-Karatas
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.410-418
    • /
    • 2023
  • Bacilysin is a dipeptide antibiotic composed of L-alanine and L-anticapsin produced by certain strains of Bacillus subtilis. Bacilysin is gaining increasing attention in industrial agriculture and pharmaceutical industries due to its potent antagonistic effects on various bacterial, fungal, and algal pathogens. However, its use in industrial applications is hindered by its low production in the native producer. The biosynthesis of bacilysin is mainly based on the bacABCDEF operon. Examination of the sequence surrounding the upstream of the bac operon did not reveal a clear, strong ribosome binding site (RBS). Therefore, in this study, we aimed to investigate the impact of RBS as a potential route to improve bacilysin production. For this, the 5' untranslated region (5'UTR) of the bac operon was edited using the CRISPR/Cas9 approach by introducing a strong ribosome binding sequence carrying the canonical Shine-Dalgarno sequence (TAAGGAGG) with an 8 nt spacing from the AUG start codon. Strong RBS substitution resulted in a 2.87-fold increase in bacilysin production without affecting growth. Strong RBS substitution also improved the mRNA stability of the bac operon. All these data revealed that extensive RBS engineering is a promising key option for enhancing bacilysin production in its native producers.

Control of Tylosin Biosynthesis in Streptomyces fradiae

  • Cundliffe, Eric
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권9호
    • /
    • pp.1485-1491
    • /
    • 2008
  • Tylosin biosynthesis is controlled in cascade fashion by multiple transcriptional regulators, acting positively or negatively, in conjunction with a signalling ligand that acts as a classical inducer. The roles of regulatory gene products have been characterized by a combination of gene expression analysis and fermentation studies, using engineered strains of S. fradiae in which specific genes were inactivated or overexpressed. Among various novel features of the regulatory model, involvement of the signalling ligand is not essential for tylosin biosynthesis.

유동층 생물반응기에서 세파로스포린 C 생산에 대한 메치오닌의 영향 (Effect of Methionine on Cephalosporin C Production in a Fluidized- bed Bioreactor)

  • Kim, Eui-Yong;Yoo, Young-Je;Park, Young-Hoon
    • 한국미생물·생명공학회지
    • /
    • 제17권6호
    • /
    • pp.611-618
    • /
    • 1989
  • Cephalosporium acremonium 균주로 미생물 고정화 증식입자를 제조하여 유동층 생물반응기에서 세파로스포린 C 생산에 대한 메치오닌의 영향에 대하여 연구하였다. 메치오닌은 세파로스포린 C 생합성에 매우 중요한 대사조절인자로 알려져 있는데, 본고에서는 초기 발효배지 내 메치오닌 농도의 영향과 이를 토대로 생물반응기에 메치오닌을 주입하였을 때 세파로스포린 C 생산에 미치는 메치오닌의 영향을 관찰하였다. 초기 배지 내에 존재하는 메치오닌에 의해 세파로스포린 C 생산성이 증가하였으며, 메치오닌의 최적양(0.3-0.5w/v%)이 존재하였다. 또한 메치오닌에 의해 탄소원의 소모속도가 증가됨이 관찰되었다. 배지내 메치오닌이 고갈될 때 세파로스포린 C 생산이 극대화되었으나 유동층 생물반응기에서 메치오닌을 부가적으로 첨가하였을 때 그 효과는 기대한 수준에 미치지 못했는데 이는 생체내 메치오닌의 축적과 관계가 있는 것으로 판단되었다. 또 고정화 증식입자를 사용하였을 때 세파로스포린 C 생산에 양호한 결과를 얻었는데 이 경우에도 적정량의 메치오닌 투여가 생산성에 중요한 인자임을 발견하였다. 따라서 유동층 반응기의 운전에 의해 세포로스포린 C 생산성을 향상시키기 위해서는 초기 운전단계에서 최적양의 메치오닌을 주입하는 것이 가장 중요하며 고정화 증식입자의 사용에 의해 공정생산성을 획기적으로 증대시킬 수 있다고 판단되었다.

  • PDF

채소 재배에서 사용하는 농용 항생제에 대한 주요 식물병원세균의 저항성 평가 (Evaluation of Resistance of Phytopathogenic Bacteria to Agricultural Antibiotics)

  • 김지연;백광현;이선영
    • 식물병연구
    • /
    • 제29권2호
    • /
    • pp.168-173
    • /
    • 2023
  • 본 연구에서는 시중에 판매되고 있는 3종의 농용 항생제를 대상으로 Pectobacterium carotovorum, Pseudomonas syringae pv. actinidiae, Clavibacter michiganensis subsp. michiganensis, C. michiganensis subsp. capsici 및 Xanthomonas arboricola pv. pruni를 포함하는 식물병원세균 91 균주에 대한 저항성을 평가하였으며 다양한 농도의 발리다마이신에이 단독성분에 의한 흡광도 측정을 통해 분광학적으로 균주 생장을 확인하였다. 주성분으로 옥시테트라사이클린과 스트렙토마이신이 합제된 농용 항생제의 경우 안전사용기준 농도의 100배에서도 모든 균주가 생장하지 않았다. 그러나 스트렙토마이신이 주성분인 농용 항생제의 경우 안전사용농도와 그 10배의 농도에서 91개 균주 중 각각 4%와 2%에서 생장하는 것으로 나타났다. 또한 발리다마이신에이의 경우에는 안전사용농도와 그 10배, 100배의 농도에서 각각 97%, 93%, 73%의 균주가 저항성을 가지는 것으로 확인되었으며 그 중에서도 특히 P. carotovorum이 발리다마이신에이에 가장 높은 저항성을 가지는 것으로 나타났다. 발리다마이신에이 단독성분을 통한 저항성을 확인한 결과, 농용 항생제 발리다마이신에이에 저항성을 가지는 균주와 가지지 않는 균주 간의 경향성은 보이지 않는 것으로 나타났다. 그러므로, 식물병원세균에서 항생제 저항성 발달을 이해하기 위한 추가적인 연구가 필요할 것으로 생각된다.

High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture

  • Jung, Jaejoon;Jee, Seung Cheol;Sung, Jung-Suk;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.130-138
    • /
    • 2016
  • The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

Comparison of Growth Performance of Antibiotic-free Yorkshire Crossbreds Sired by Berkshire, Large Black, and Tamworth Breeds Raised in Hoop Structures

  • Whitley, N.;Morrow, W.E.M.;See, M.T.;Oh, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1351-1356
    • /
    • 2012
  • The objective of this study was to compare body weight, ADG, and feed:gain ratio of antibiotic-free pigs from Yorkshire dams and sired by Yorkshire (YY), Berkshire (BY), Large Black (LBY) or Tamworth (TY) boars. All the crossbred pigs in each of three trials were raised as one group from weaning to finishing in the same deep-bedded hoop, providing a comfortable environment for the animals which allowed rooting and other natural behaviors. Birth, weaning and litter weights were measured and recorded. From approximately 50 kg to market weight (125 kg), feed intake and body weights were recorded manually (body weight) or using a FIRE (Feed Intake Recording Equipment, Osborne Industries Inc. Osborne, Kansas) system with eight individual feeding stations. Feed intake data for 106 finishing pigs between 140 and 210 d of age and the resulting weights and feed conversion ratios were analyzed by breed type. Least square means for body weights (birth, weaning and to 240 d) were estimated with Proc Mixed in SAS 9.2 for fixed effects such as crossbreed and days of age within the sire breed. The differences within fixed effects were compared using least significant differences with DIFF option. Individual birth weights and weaning weights were influenced by sire breed (p<0.05). For birth weight, BY pigs were the lightest, TY and YY pigs were the heaviest but similar to each other and LBY pigs were intermediate. For weaning weights, BY and LBY pigs were heavier than TY and YY pigs. However, litter birth and weaning weights were not influenced by sire breed, and average daily gain was also not significantly different among breed types. Tamworth sired pigs had lower overall body weight gain, and feed conversion was lower in TY and YY groups than BY and LBY groups (p<0.05), however, number of observations was somewhat limited for feed conversion and for Tamworth pigs. Overall, no convincing differences among breed types were noted for this study, but growth performance in the outdoor environment was satisfactory.