• 제목/요약/키워드: Antibiotic Alternatives

검색결과 37건 처리시간 0.029초

새로운 헬리코박터 제균 요법 (New Helicobacter pylori Eradication Therapies)

  • 박재용;김재규
    • 대한소화기학회지
    • /
    • 제72권5호
    • /
    • pp.237-244
    • /
    • 2018
  • While the prevalence of Helicobacter pylori (H. pylori) infection is decreasing in Korea, the incidence of gastric cancer remains high, emphasizing the importance of H. pylori eradication. A new treatment strategy is needed as the eradication rate with standard triple therapy, which is currently the standard first-line regimen for H. pylori infection, has decreased below the optimum level. The major cause of eradication failure is increased antibiotic resistance. Sequential, concurrent, and hybrid therapies that include clarithromycin produce higher eradication rates than conventional standard triple therapy. However, the effectiveness of these treatments is limited in regions where the resistance rate to various antibiotics is high. Bismuth quadruple therapy is another alternative therapy, but again the eradication rate is not sufficiently high. Tailored therapy based on individual characteristics, including antibiotic susceptibility, may be ideal, but there are several limitations for clinical application and further research is needed. New potassium-competitive acid blocker-based therapies could emerge as effective alternatives in the near future. A consensus is needed to establish a strategy for applying new eradication therapies in Korea.

Effects of dietary essential oils on growth performance and cholesterol metabolism in chickens

  • Lee, Kyung-Woo;Anton C. Beynen;Lee, Bong-Duk
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2003년도 제20차 정기총회 및 학술발표회
    • /
    • pp.53-64
    • /
    • 2003
  • 사료내 낮은 수준의 항생제 첨가는 가축의 성장능력을 향상시키는 목적으로 사용하고 있다. 그러나, 항생제 사용에 따른 내성균의 출현은 결과적으로 항생제 대체제 개발을 촉진하는 계기가 되었다. 본 논문은 식물유래 정유성분의 항생제 대체제로서의 그 가능성을 알아보고자 실시하였다. 식물 정유의 항균 효과는 많이 보고되었으며 정유의 독성효과는 사료첨가량 수준에서는 미약한 것으로 사료된다. 또한, 정유급여는 가금의 혈중내 콜레스테롤을 감소시키며, 또한, 소화작용에도 관여하여 소화를 촉진시키는 것으로 보여진다. 결론적으로 사료내 정유의 첨가는 가금의 성장을 향상시킬 수 있으며, 식물유래 정유성분은 항생제의 대체제로서 이용될 수 있는 잠재성을 내포한 것으로 사료된다.

  • PDF

Screening of Anti-Adhesion Agents for Pathogenic Escherichia coli O157:H7 by Targeting the GrlA Activator

  • Sin Young Hong;Byoung Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.329-338
    • /
    • 2023
  • Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.

세균의 적정밀도 인식을 통한 신호전달 및 신호전달 차단 연구 (Bacterial Quorum Sensing and Anti-Quorum Sensing)

  • 박순양;이정기
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2004
  • Many bacteria monitor their population density and control the expression of specialized gene sets in response to bacterial cell density based on a mechanism referred to as quorum sensing. In all cases, quorum sensing involves the production and detection of extracellular signaling molecules, auto inducers, as which Gram-negative and Gram-positive bacteria use most prevalently acylated homoserine lactones and processed oligo-peptides, respectively. Through quorum-sensing communication circuits, bacteria regulate a diverse array of physiological functions, including virulence, symbiosis, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. Many pathogens have evolved quorum-sensing mechanisms to mount population-density-dependent attacks to over-whelm the defense responses of plants, animals, and humans. Since these AHL-mediated signaling mechanisms are widespread and highly conserved in many pathogenic bacteria, the disruption of quorum-sensing system might be an attractive target for novel anti-infective therapy. To control AHL-mediated pathogenicity, several promising strategies to disrupt bacterial quorum sensing have been reported, and several chemicals and enzymes have been also investigated for years. These studies indicate that anti-quorum sensing strategies could be developed as possible alternatives of antibiotics.

Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity

  • Kikusato, Motoi
    • Animal Bioscience
    • /
    • 제34권3_spc호
    • /
    • pp.345-353
    • /
    • 2021
  • Phytobiotics, also known as phytochemicals or phytogenics, have a wide variety of biological activities and have recently emerged as alternatives to synthetic antibiotic growth promoters. Numerous studies have reported the growth-promoting effects of phytobiotics in chickens, but their precise mechanism of action is yet to be elucidated. Phytobiotics are traditionally known for their antioxidant activity. However, extensive investigations have shown that these compounds also have anti-inflammatory, antimicrobial, and transcription-modulating effects. Phytobiotics are non-nutritive constituents, and their bioavailability is low. Nonetheless, their beneficial effects have been observed in several tissues or organs. The health benefits of the ingestion of phytobiotics are attributed to their antioxidant activity. However, several studies have revealed that not all these benefits could be explained by the antioxidant effects alone. In this review, I focused on the bioavailability of phytobiotics and the possible mechanisms underlying their overall effects on intestinal barrier functions, inflammatory status, gut microbiota, systemic inflammation, and metabolism, rather than the specific effects of each compound. I also discuss the possible mechanisms by which phytobiotics contribute to growth promotion in chickens.

입효산(立效散)의 Methicillin-Resistant Staphylococcus aureus에 대한 항균활성에 관한 연구 (Antibacterial Effect of Ipyo-san against Methicillin-Resistant Staphylococcus aureus)

  • 윤재홍;최연주;정승현;신길조
    • 대한한방내과학회지
    • /
    • 제34권3호
    • /
    • pp.278-288
    • /
    • 2013
  • Objectives : Methicillin-resistant Staphylococcus aureus (MRSA) has a cephalosporin and beta-lactam antibiotic-resistant strains. MRSA is one of the major pathogens causing hospital infection and the isolation ratio of MRSA has gradually increased. Consequently, increased resistance to antibiotics is causing serious problems in the world. Therefore, there is a need to develop alternative antimicrobial drugs for the treatment of infectious diseases. Methods : The antibacterial activities of Ipyo-san were evaluated against 2 strains of MRSA and 1 standard Methicillin-susceptible staphylococcus aureus (MSSA) strain by using the disc diffusion method, minimal inhibitory concentrations (MIC) assay, colorimetric assay using MTT test, checkerboard dilution test and time-kill assay performed under dark. Results : The MIC of Ipyo-san water extract against S. aureus strains ranged from 1000 to $2,000{\mu}g/ml$, so we confirmed that it had a strong antibacterial effect. Also, the combinations of Ipyo-san water extract and conventional antibiotics exhibited improved inhibition of MRSA with synergy effect. We suggest that Ipyo-san water extract against MRSA has antibacterial activity so it has potential as alternatives to antibiotic agents. For the combination test, we used Triton X-100 (TX) and DCCD for measurement of membrane permeability and inhibitor of ATPase. As a result, antimicrobial activity of Ipyo-san water extract was affected by the cell membrane. Conclusions : We suggest that the Ipyo-san water extract lead the treatment of bacterial infection to solve the resistance and remaining side-effect problems that are the major weak points of traditional antibiotics.

Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota

  • Unno, Tatsuya;Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.431-438
    • /
    • 2015
  • Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance.

Antibacterial compounds against fish pathogenic bacteria from a combined extract of Angelica gigas and Artemisia iwayomogi and their quantitative analyses

  • Lim, Jae-Woong;Kim, Na Young;Seo, Jung-Soo;Jung, Sung-Hee;Kang, So Young
    • Fisheries and Aquatic Sciences
    • /
    • 제24권10호
    • /
    • pp.319-329
    • /
    • 2021
  • In the search for antibiotic alternatives from safe and effective medicinal plants against fish pathogenic bacteria, we found that a combined extract (CE) of 1:1 (w/w) ratio of Angelica gigas Nakai roots and aerial parts of Artemisia iwayomogi Kitamura showed antibacterial activity against the fish pathogenic bacteria. By antibacterial activity-guided fractionations and isolations, five compounds were isolated and identified as decursinol angelate (1), decursin (2), xanthotoxin (3), demethylsuberosin (4), and 2,4-dihydroxy-6-methoxyacetophenone (5) through spectroscopic analyses, such as nuclear magnetic resonance (NMR) and mass spectrometry (MS). Among the compounds, 1 and 2 showed the highest antibacterial activities against Streptococcus iniae and Vibrio anguillarum, showing minimum inhibitory concentrations (MICs) of 62.5-250 ㎍/mL. Compounds 3, 4, and 5 were also found to be active, with MICs of 31.25-1,000 ㎍/mL for those strains. Furthermore, active compounds, 1 and 2 in CE were simultaneously quantified using high-performance liquid chromatography-tandem MS (HPLC-MS/MS). The average contents of 1 and 2 in CE was 3.68% and 6.14%, respectively. The established method showed reliable linearity (r2 > 0.99), good precision, accuracy, and specificity with intra- and inter-day variations of < 2 % and recoveries of 90.13%-108.57%. These results may be helpful for establishing the chemical profile of CE for its commercialization as an antibiotic alternative in aquaculture.

Recent advances in dairy goat products

  • Sepe, Lucia;Arguello, Anastasio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8_spc호
    • /
    • pp.1306-1320
    • /
    • 2019
  • Goat population world-wide is increasing, and the dairy goat sector is developing accordingly. Although the new technology applied to the goat industry is being introduced slowly because the weight of traditional subsector in the dairy sector, considerable advances have been made in the last decade. Present review focuses on the emerging topics in the dairy goat sector. Research and development of traditional and new dairy goat products are reviewed, including the new research in the use of goat milk in infant formula. The research in alternatives to brine, production of skimmed goat cheeses and the use of different modified atmosphere packaging are also addressed. Special attention is given to antibiotic residues and their determination in goat milk. Functional foods for human benefits are a trending topic. Health properties recently discovered in dairy goat products are included in the paper, with special attention to the antioxidant activity. The dual-purpose use of goats by humankind is affecting the way of how new technology is being incorporated in the dairy goat sector and will certainly affect the future development of dairy goat products.

Immunosecurity: immunomodulants enhance immune responses in chickens

  • Yu, Keesun;Choi, Inhwan;Yun, Cheol-Heui
    • Animal Bioscience
    • /
    • 제34권3_spc호
    • /
    • pp.321-337
    • /
    • 2021
  • The global population has increased with swift urbanization in developing countries, and it is likely to result in a high demand for animal-derived protein-rich foods. Animal farming has been constantly affected by various stressful conditions, which can be categorized into physical, environmental, nutritional, and biological factors. Such conditions could be exacerbated by banning on the use of antibiotics as a growth promoter together with a pandemic situation including, but not limited to, African swine fever, avian influenza, and foot-and-mouth disease. To alleviate these pervasive tension, various immunomodulants have been suggested as alternatives for antibiotics. Various studies have investigated how stressors (i.e., imbalanced nutrition, dysbiosis, and disease) could negatively affect nutritional physiology in chickens. Importantly, the immune system is critical for host protective activity against pathogens, but at the same time excessive immune responses negatively affect its productivity. Yet, comprehensive review articles addressing the impact of such stress factors on the immune system of chickens are scarce. In this review, we categorize these stressors and their effects on the immune system of chickens and attempt to provide immunomodulants which can be a solution to the aforementioned problems facing the chicken industry.