• Title/Summary/Keyword: Anti-penetration

Search Result 99, Processing Time 0.029 seconds

Wettability Simulation of Oil Droplet on Riblet Surface (리블렛 표면에서 유적의 젖음성에 대한 수치 해석)

  • Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.94-98
    • /
    • 2019
  • The riblet structure like shark skin has been widely studied owing to its drag reduction and anti-fouling properties. In this study we simulated the wettability of an oil droplet on a riblet surface. We developed a numerical analysis method using the Wenzel equation and Cassie-Baxter equation that can estimate the contact angle with a penetrated depth of the droplet on rough surfaces. Riblet surfaces with nine scales composed of five hemi-elliptical ribs are generated numerically. The variation of contact angles with fractional depth of penetration for the generated riblet surfaces with and without coatings is demonstrated in the condition of solid-air-oil and solid-water-oil interfaces. The contact angle for the uncoated surface decreases with increasing fractional depth of penetration more drastically than that for the coated surface. For the effect of surface roughness on the contact angle of the droplet, the oleophilic surface gives lower contact angle when the surface is rougher, whereas the oleoophobic surface gives higher contact angle with higher roughness To verify the analysis results, the wetting angle was measured in the solid-air-oil interface and solid-water-oil interface for the shark-skin template and shark-skin replica. The effects of teflon coating were also evaluated. It is shown that the simulation results cover the experimental ones.

The statistical factors affecting the freezing of the road pavement (도로포장체의 동결에 영향을 미치는 통계적 요인)

  • Kim, Hyun-Ji;Lee, Jea-Young;Kim, Byung-Doo;Cho, Gyu-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • Due to the character of the climate of Korea, the pavement of a road is Influenced by freezing in winter season and thawing in thawing season. In the last few years, several articles have been devoted to the study to minimize the damage of freezing and thawing action. The purpose of this paper is to identify appropriacy of factors that influence road pavement thickness. We conduct the decision tree analysis on the field data of road pavement. The target variable is 'Frost penetration'. This value was calculated from the temperature data. The input variables are 'Region', 'Type of road pavement', 'Anti-frost layer', 'Month' and 'Air temperature'. The region was divided into 9 regions by freezing index $350{\sim}450^{\circ}C{\cdot}day$, $450{\sim}550^{\circ}C{\cdot}day$, $550{\sim}650^{\circ}C{\cdot}day$. The type of road pavement has three-section such as area of cutting, boundary area of cutting and bankin, lower area of banking. As the result, the variables that influence 'Frost penetration' are Month, followed by anti-frost layer, air temperature and region.

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.

Evaluations of Corrosion Resistance of Coated Steel Using Polymer Cement Slurry (폴리머 시멘트 슬러리로 코팅한 도장철근의 내식성 평가)

  • Jo, Young-Kug;Kim, Young-Jib;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Reinforced concrete structures under sever conditions such as marine structures, bridges and structures constructed with aggregates(dredged from sea), can be deteriorated from corrosion of the reinforcing bars. The purpose of this study is to evaluate the anti-corrosive performance of coated steel using polymer cement slurry. Polymer cement slurry with various polymer dispersions and corrosion inhibiting agent were coated to the surface of bars, and tested for accelerated corrosion tests. Tests include immersion in NaCl 10% solution, chloride ion spray, autoclave cure, autoclave cure after carbonation, penetration of NaCl 10 % solution, carbonation after penetration of NaCl 10% solution. Test results, show that the anti-corrosive performace is considerably improved by using polymer cement slurry at surface of steel. And this trend is marked by adding of corrosion inhibiting agent. This difference of the anti-corrosive properties is hardly recognized according to types of polymer dispersions. The coated steel using polymer cement slurry will be improved to a great extent compared to those of plain steel when increasing content of chloride ion in cement concrete.

Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin

  • Suh, Dong-Churl;Kim, Yeongseok;Kim, Hyeongmin;Ro, Jieun;Cho, Seong-Wan;Yun, Gyiae;Choi, Sung-Up;Lee, Jaehwi
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.73-77
    • /
    • 2014
  • The purpose of this study was to examine the effect of stabilization of retinyl palmitate (RP) on its skin permeation and distribution profiles. Skin permeation and distribution study were performed using Franz diffusion cells along with rat dorsal skin, and the effect of drug concentration and the addition of pectin on skin deposition profiles of RP was observed. The skin distribution of RP increased in a concentration dependent manner and the formulations containing 0.5 and 1 mg of pectin demonstrated significantly increased RP distributions in the epidermis. Furthermore, it was found that skin distribution of RP could be further improved by combined use of pectin and ascorbyl palmitate (AP), due largely to their anti-oxidative effect. These results clearly demonstrate that the skin deposition properties of RP can be improved by stabilizing RP with pectin. Therefore, it is strongly suggested that pectin could be used in the pharmaceutical and cosmetic formulations as an efficient stabilizing agent and as skin penetration modulator.

The effect on skin deposition and moisturizing of ursolic acid in hydrogel system containing wood vinegar (목초액을 첨가한 하이드로 겔 제제로부터 우르솔릭산의 피부 침적 및 보습에 미치는 영향)

  • Lee, Gye-Won;Lee, Ju-Yeon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • Wood vinegar is well known as a softening agent affecting on the stratum corneum that is easy to penetrate into the skin. In this study, we prepared mixed ursolic acid hydrogel with wood vinegar(1, 2, 5%) as a penetration enhancer. The accumulation of ursolic acid in the skin from hydrogels was evaluated in vitro hairless mouse skin and skin moisturizing effect of them was evaluated using the corneometer and the tewermeter. And the role of stratum corneum as a protective barrier was evaluated as well. The hydrogels were retained about 40% of water retention capacity 2hrs and had better effect on the stripped skin than full-thickness skin. The accumulation of ursolic acid through stripped skin from hydrogels with wood vinegar was not change compared to normal skin, which indicated the action site of wood vinegar and the accumulation site of ursolic acid would be stratum corneum. From these result, we could find wood vinegar seems to be a good enhancer for active materials with anti-wrinkle and anti aging effect such as ursolic acid, and can be a developed topical delivery system maintaining excellent water retention capacity.

Quality Enhancement of Falcataria-Wood through Impregnation

  • SUMARDI, Ihak;DARWIS, Atmawi;SAAD, Sahriyanti;ROFII, Muhammad Navis
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.722-731
    • /
    • 2020
  • The purpose of this research is to determine the efficiency of impregnation using phenol formaldehyde resin to enhance Falcataria wood's stability and better mechanical properties. Impregnation process was carried out after moisture content stabilized at 12% on samples with a dimension of 20 mm × 20 mm × 300 mm at various concentrations and pressure time. Dimensional stability was evaluated by thickness swelling (TS) and anti-swelling efficiency (ASE) and the young's modulus was conducted according to BS 573. The mechanical properties and dimensional stability of impregnated wood were evaluated. Dimensional stability and mechanical properties of Falcataria wood were successfully increased after impregnation. PF impregnation can improve the mechanical properties and the density from 0.26 g/㎤ to 0.30 g/㎤ even with only 10% of weight percent grain. Dimensional stability increases with increasing resin concentration and time pressure. The highest increase in mechanical properties was found at a higher concentration of PF. The penetration of PF into the wood's cell darkens the color of impregnated wood.

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.

Percutaneous absorption Characteristics of Anti hyperlipidemia Gel Ointment using Fibric acid (Fibric acid를 이용한 항고지혈증 겔 연고의 경피 흡수 특성)

  • Jung, Duck-Chae;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • New biological treatments were being developed at a record place, but their potential could be compromised by a significant obstacle: the delivery of these drugs into a body. Pharmaceutical delivery is now nearly as important as product. New systems are being developed, and Drug Delivery Markets Series cover these new systems. Transdermal Delivery System(TDS) is often used as a method of drug dosage into the epidermic skin. An approach used to delivery drugs through the skin for therapeutic use as an alternative to oral, intravascular, subcutaneous and transmucosal routes. Various transdermal drug delivery technologies are described including the use of suitable formulations, carriers and penetration enhancers. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other methods of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stopped if the drug dosage lead to side effect. Polysaccharides, such as karaya gum and glucomannan, were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers, drug contents. Among these polysaccharide, the permeation rate of karaya gum matrix was fastest in fibric acid(ciprofibrate) such as lipophilic drug in vitro. We used glycerin, PEG400 and PEG800 as enhancers. Since dermis has more water content(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when PEG400 was more effective for lipophilic drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. Especially, this result suggests a possible use of polysaccharide gel ointment matrix as a transdermal delivery system of anti-hyperlipoproteinemic agent.