• Title/Summary/Keyword: Anti-obesity drug

Search Result 60, Processing Time 0.024 seconds

Effect of Aconitum carmichaeli Debx on Energy Metabolism in C2C12 Skeletal Muscle Cells (부자추출물의 골격근 세포에서의 에너지 조절 작용)

  • Song, Mi-Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • Objectives: The all anti-obesity drugs currently approved by the US Food and Drug Administration work by reducing energy intake. In fact, no approved drug targets energy expenditure. In Korean medicine, it is known to Qi or Yang invigorating therapy could increase energy metabolism. Aconitum carmichaeli Debx (ACD) is a Yang invigorating herb, often used for treat obesity in Korean medicine. In the present study, the authors investigated the regulatory effects of ACD in energy metabolism and mitochondrial biogenesis in C2C12 skeletal muscle cells. Methods: The water extract of ACD (0.2, 0.5 and 1.0 mg/ml) were treated in differentiated C2C12 cells. The protein or mRNA levels of target genes were analyzed and mitochondrial mass were investigated. Results: ACD activated the expressions of peroxisome proliferator-activated receptor gamma coactivator 1-alpha ($PGC-1{\alpha}$), nuclear respiratory factor 1 and TFAM and increased mitochondrial mass. ACD also increased adenosin monophosphate-activated protein kinase (AMPK), and acetyl-CoA carboxylase. Conclusions: This study suggests that ACD has the potential to increase energy metabolism and mitochondrial biogenesis by activating AMPK and $PGC1{\alpha}$.

Characterization of Tunicamycin as Anti-obesity Agent

  • Song, Ha-Suk;Kim, Hye-Min;Jung, Sook-Yung;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2009
  • Adipocytes undergo adipocyte stress in the excessive presence of lipid. Adipocyte stress accompanies the typical signs of endoplasmic reticulum (ER) stress: unfolded protein response and overexpression of molecular chaperones. Apoptotic induction in adipocytes is known as a good strategy for treating obesity. The drug "tunicamycin" was tested for its therapeutic potential in inducing apoptosis on differentiating adipocytes of 3T3-L1. When the 3T3-L1 cells, stimulated for adipogenesis, were treated with tunicamycin, they showed typical ER stress symptoms. Despite progression in ER stress, however, the differentiated 3T3-L1 hardly proceeded to apoptosis based on the CHOP protein expression and FACS analysis. This is very different from C2C12, the myogenic counterpart of 3T3-L1, which showed significant apoptosis along with ER stress. This study also characterizes a potential mechanism whereby adipocyte may avoid apoptosis to sustain the pathological state of obesity. The level of GRP94 expression significantly upholds in 3T3-L1 under tunicamycin treatment compared to preadipocytes and C2C-12. When GRP94 expression was inhibited by siRNA, 3T3-L1 showed a higher level of CHOP expression compared to C2C12 cells. In conclusion, adipocytes exert an anti-apoptotic mechanism under ER stress caused by tunicamycin; thus, apoptotic induction in adipocyte is not a viable anti-obesity option. The unusual level of GRP94 may serve as a key role whereby adipocytes reach to the obesity level circumventing the apoptosis.

Anti-obesity and Anti-hyperlipidemic Effects of Taeyeumjowee-tang and its modified prescription (태음조위탕(太陰調胃湯)과 그 가감방(加減方)의 항비만 및 항고지혈증 효과에 관한 연구)

  • Kim, Kil-Soo;Lee, Dong-Ung;Kim, Yong-Lae;Hwang, Moon-Je;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.2
    • /
    • pp.57-74
    • /
    • 2007
  • Objective : The purpose of this study was to investigate the anti-obesity and anti-hyperlipidemic Effects of Taeyeumjowee-tang and its modified prescription on the animal model of obesity and hyperlipidemia induced high-fat diet. Method : 1) The extracts of Taeyeumjowee-tang (TJT) and its modified prescription, Taeyeumjoweetang gagam-bang (TJGB) were evaluated for its inhibitory effects on obesity. 2) The body weight and feed weight were determined in the pre-treated and post-treated mice and the lipid profiles in the serum were analyzed in order to evaluate the anti-hyperlipidemia action of the extracts. 3) The effect of each extract was investigated for the influences on monoamine oxidase activity and HMG-CoA reductase activity. Results 1. TJT and TJGB extracts dose-dependently reduced the body weight and feed intake in normal mice. The effect of TJGB extract was better than that of TJT extract. 2. TJGB extract diminished the body weight increase and reduced the feed intake in the pre-treatment or post-treatment of the extract 3. TJGB extract decreased the amount of total cholesterol slightly and triglyceride potently after the pre-treatment or post-treatment, but HDL cholesterol exhibited no remarkable change compared with control. 4. TJGB extract weakly potentiated the monoamine oxidase activity, but its effect was better than that of TJT extract. 5. TJGB extract weakly inhibited the HMG-CoA reductase activity, but its effect was better than that of TJT extract. Conclusion : Taeyeumjowee-tang and its modified prescription can clinically be useful as anti-obesity drug and also for the improvement of hyperlipidemia.

  • PDF

The Herbal Composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica Inhibits High Fat Diet-Induced Obesity by Regulating Appetite Genes

  • Shin, Soon Shik;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • The herbal composition Gyeongshingangjeehwan 18 (GGEx18), which is composed of three herbs, Laminaria japonica Aresch (Laminariaceae), Rheum palmatum L. (Polygonaceae), and Ephedra sinica Stapf (Ephedraceae), has been used as an anti-obesity drug in Korean local clinics. Thus, we investigated whether GGEx18 regulates obesity by suppressing appetite in high fat diet-induced obese C57BL/6J mice. Administration of GGEx18 to obese mice for 9 weeks significantly decreased body weight gain, epididymal adipose tissue weight, and food efficiency ratio. GGEx18 also caused a significant decrease in the circulating levels of leptin, which were increased by about 450% in obese control mice compared with normal lean mice. Concomitantly, GGEx18 decreased mRNA levels of a potent appetite-stimulating hormone neuropeptide Y, but increased an appetite-suppressing hormone pro-opiomelanocortin mRNA levels. These results suggest that GGEx18 may prevent obesity through regulating appetite in nutritionally obese mice.

Euchrestaflavanone A can attenuate thrombosis through inhibition of collagen-induced platelet activation

  • Shin, Jung-Hae;Kwon, Hyuk-Woo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • Euchrestaflavanone A (EFA) is a flavonoid found in the root bark of Cudrania tricuspidata. C. tricuspidata extract, widely used throughout Asia in traditional medicine, has been investigated phytochemically and biologically and is known to have anti-obesity, anti-inflammatory, and anti-tumor effects. It has been reported that C. tricuspidata extract also possesses anti-platelet effects; however, the mechanism of its anti-platelet and anti-thrombotic activities is yet to be elucidated. In this study, we investigated the effects of EFA on the modulation of platelet function using collagen-induced human platelets. Our results showed that EFA markedly inhibited platelet aggregation. Furthermore, it downregulated glycoprotein IIb/IIIa (αIIb/β3)-mediated signaling events, including platelet adhesion, granule secretion, thromboxane A2 production, and clot retraction, but upregulated the cyclic adenosine monophosphate-dependent pathway. Taken together, EFA possesses strong anti-platelet and anti-thrombotic properties and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Simple Fabrication of Adipocyte Cell Chip Using Micropatterning (미세접촉인쇄법을 이용한 지방세포 칩 제작)

  • Kim, Gi Yong;Jeong, Heon-Ho;Lee, Chang-Soo;Roh, Changhyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.223-228
    • /
    • 2016
  • In this study, we described a simple and facile method to generate uniform microwells poly(dimethyl siloxane) (PDMS) microstamps through micro-molding for efficient, rapid and reliable cell patterning of adipocyte differentiation. In contrast to the conventional methods, the microstamp technologies are low expensive, non-toxic, and using a small amount of solution. Recently, Orlistat known as tetrahydrolipstatin is a prescription drug designed to treat obesity which is used to aid in weight loss and help to reduce overweight obesity. Here, 3T3-L1 cells were treated under various concentration manners of Orlistat $0.2{\mu}M{\sim}5.0{\mu}M$. and it was confirmed maximum 26.5% inhibition activity compared to control. Thus, we elucidated this platform can be used for the real-time analyzing of cell proliferation, adipocyte differentiation for evaluation of anti-obesity agents on cell chip. Furthermore, we except that this platform technology designed here might be readily be expanded to discover a wider variety of anti-obesity agents.

The Anti-obesity Effects of Younggyechulgam-tang-ga Hwanggi on Obesity in Mice Induced by High Fat Diet (고지방식이 유도 비만생쥐에 대한 영계출감탕(苓桂朮甘湯) 가(加) 황기(黃芪)의 항비만 효과)

  • Jeong, Man-Jin;Woo, Chang-Hoon;Ahn, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.2
    • /
    • pp.1-20
    • /
    • 2018
  • Objectives This study was conducted to experimentally evaluate the effects of Younggyechulgam-tang-ga Hwanggi(YGT) on obesity in mice induced by high fat diet. Methods The experiment was conducted with 4-week-old male mice divided into 5 groups. They were a normal diet group(Nor), a high fat diet group(Veh), a positive drug control group-orlistat 40 mg/kg(Oris), a 1.08 g/kg group(YGTL), and a 2.16 g/kg group(YGTH), and were tested for five weeks. Changes in antioxidant activity, body weight, organ weight, ROS, AST, ALT, TC, TG, HDL-C, LDL-C and lipid metabolism protein were checked. Results YGTL and YGTH group significantly reduced body weight compared to Veh group. YGTH group significantly reduced visceral fat weights compared to Veh group. In blood biochemistry analysis, ROS, AST, ALT, TC, TG and LDL-C in YGTL and YGTH group were significantly lower than Veh group. HDL-C increased significance in YGTL and YGTH group. In antioxidation protein analysis, Catalase, GPx and HO-1 have increased significantly in YGTL and YGTH group. YGTH group have increased $PPAR-{\alpha}$, p-AMPK compared to Veh group. but decreased FAS. SREBP-1, p-ACC levels in YGTL and YGTH group were decreased compared to Veh group, however CPT-1, UCP-2 levels in YGTL and YGTH group were increased compared to Veh group. Conclusions YGT has anti-obesity effects by regulating lipolysis and antioxidation in a diet-induced obesity model. Additional clinical studies are needed.

Effects of GyeongshinhaeGihwan 1(GGT1) on the Expression of Obesity-related Genes in Obese Male hGHTg Rats (경신해지환(輕身解脂丸) (GGT1)이 형질전환 비만모델 hGHTg 수컷 쥐의 비만관련 유전자 발현에 미치는 영향)

  • Jung Yang-Sam;Yoon Mi-Chung;Kim Gyeong-Cheol;Shin Soon-Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.93-97
    • /
    • 2006
  • To investigate whether GyeongshinhaeGihwan 1(GGT1), an anti-obesity herbal medicine widely used in oriental medicine, regulates the expression of obesity-related genes, we measured the changes in mRNA levels of these genes by GGT1 in human growth hormone transgenic (hGHTg) obese male rats, and these effects by GGT1 were compared with those of reductil (RD), an anti-obesity drug approved by FDA. Rats received once daily oral administrations of autoclaved water, RD, or GGT1 for 8 weeks. At the end of study, rats were sacrificed and tissues were harvested. Total RNA from adipose tissue, liver and kidney was prepared and the mRNA levels for LPL (lipoprotein lipase), PPAR $\gamma$ (peroxisome proliferator activated receptor-gamma), PPAR$\delta$ (peroxisome proliferator activated receptor-delta), leptin, TNF$\alpha$ (tumor necrosis factor-alpha), and internal standard G3PDH (glyceraldehyde-3- phosphate dehydrogenase) were analyzed by RT-PCR. PPAR$\gamma$ mRNA levels of liver and kidney were decreased in drug-treated groups compared with control group and the decrease of PPAR$\gamma$ expression was more prominent in GGT1 group than in RD group, suggesting that GGT1 is effective in the inhibition of adipogenesis and lipid storage by decreasing the PPAR$\gamma$ expression. In contrast, PPAR$\delta$ mRNA levels of adipose tissue and kidney were increased by RD and GGT1 , and the magnitudes of increase were higher in GGT1 group than in RD group, indicating that GGT1 stimulates fatty acid oxidation and energy metabolism by activating PPAR$\delta$ expression, Compared with control and RD groups, GGT1 group had higher concentrations of serum leptin, a well-known inhibitor of appetite. However, The mRNA levels of leptin, LPL, and TNF$\alpha$ were not changed by GGT1 and RD, compared with DW. These results demonstrate that GGT1 not only decreases PPAR$\gamma$ expression of liver and kidney, but also increases PPAR$\delta$ expression of adipose tissue and kidney, leading to the regulation of obesity and that these effects were more pronounced in GGT1 group compared with RD group. In addition, GGT1 seems to prevent obesity by increasing the serum leptin levels.

Anti-obesity Effect of Crataegus pinnatifida through Gut Microbiota Modulation in High-fat-diet Induced Obese Mice (산사의 장내 미생물 조절을 통한 항비만 효과)

  • Kim, Min-Jee;Choi, Yura;Shin, Na Rae;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.4
    • /
    • pp.15-27
    • /
    • 2019
  • Objectives This study was performed to evaluate anti-obesity effects of Crataegus pinnatifida (CP) on high-fat-diet induced obese mice. Methods The experimental animals were divided into four groups: normal diet (NOR) group, high fat diet (HFD) group, HFD+Xenical (XEN) group, and HFD+CP (CP) group. NOR group was fed a normal diet and the other three groups were fed high fat diet during the experiment. After the first two weeks of diet, XEN group and CP group were administered with XEN or CP for seven weeks, respectively. After that, we measured body weight, liver weight, fat weight, food intake, and serum concentrations of lipids and liver enzymes. Also the liver, intestine, fat tissue was removed to estimate the obesity-related mRNA expressions and the stool sample was collected to analyze the gut microbiota. Results We found that body weight, fat weight, and triglyceride level were decreased significantly in CP group compared to HFD group. Also CP significantly suppressed gene expressions associated with lipogenesis and inflammation, and increased gene expressions of browning of white adipose tissue and mitochondrial biogenesis. Moreover, it shifted the microbial diversity closer to that of NOR group and increased Firmicutes/Bacteriodetes ratio. Conclusions These results suggest that CP decrease body weight, fat weight and serum triglyceride. Also it inhibit inflammation and adipogenesis, altering gut microbial diversity and abundance. In conclusion, CP could be used as a therapeutic drug for obesity via gut microbiota modulation.

Changes in mRNA Expression of Obesity-related Genes by GyeongshinhaeGihwan 1 (GGT1) in hGHTg (human growth hormone transgenic) obese Female Rats (암컷 hGHTg 비만 쥐에서 경신해지환(輕身解脂丸) (GGT1)에 의한 비만관련 유전자 mRNA 발현의 변화)

  • Yoon, Ki-Hyeon;Yoon, Mi-Chung;Kim, Hoon;Shin, Soon-Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.383-387
    • /
    • 2006
  • To investigate the effect of GyeongshinhaeGihwan 1(GGT1) frequently used as an anti-obesity herbal medicine in oriental medicine on the expression of obesity-related genes, we measured the changes in mRNA levels of these genes by GGT1 in human growth hormone transgenic (hGHTg) obese female rats, and these effects by GGT1 were compared with those of reductil (RD), an anti-obesity drug approved by FDA. Rats received once daily oral administrations of autoclaved water, RD, or GGT1 for 8 weeks. At the end of study, rats were sacrificed and tissues were harvested. Total RNA from adipose tissue, liver and kidney was prepared and the mRNA levels for LPL (lipoprotein lipase), $PPAR{\gamma}$ (peroxisome proliferator activated receptor-gamma), $PPAR{\delta}$ (peroxisome proliferator activated receptor-delta), leptin, $TNF{\alpha}$ (tumor necrosis factor-alpha), and internal standard G3PDH (glyceraldehyde-3-phosphate dehydrogenase) were analyzed by RT-PCR. Compared with control group, $PPAR{\gamma}$ mRNA levels of liver and kidney were decreased in both RD and GGT1 groups, and the effects were more prominent in GGT1 group than in RD group, suggesting that GGT1 is effective in the inhibition of lipid storage by decreasing the $PPAR{\gamma}$ expression. $PPAR{\delta}$ mRNA levels of adipose tissue were increased by RD and GGT1 compared with DW, and the magnitude of increase were higher in GGT1 group than in RD group, indicating that GGT1 stimulates fatty acid oxidation and energy metabolism by activating $PPAR{\delta}$ expression. GGT1 group had higher concentrations of serum leptin, a well-known inhibitor of appetite, than control and RD groups. However, The mRNA levels of leptin, LPL, and $TNF{\alpha}$ were not changed by GGT1. These results indicate that GGT1 can prevent obesity in hGHTg obese female rats by down-regulating and up-regulating the mRNA expression of $PPAR{\gamma}$ and $PPAR{\delta}$, respectively, and that this anti-obesity effects were more pronounced in GGT1 group compared with RD group. In addition, GGT1 seems to inhibit obesity by increasing the circulating leptin levels.