• 제목/요약/키워드: Anti-inflammatory responses

검색결과 491건 처리시간 0.028초

눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용 (Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes)

  • 김다혜;황보현;이혜숙;정재훈;최영현
    • 생명과학회지
    • /
    • 제32권9호
    • /
    • pp.712-720
    • /
    • 2022
  • 비록 PM2.5 노출과 다양한 안구 표면 질환과 관련성이 많은 선행 연구에서 알려졌지만, PM2.5 가 각막에 미치는 세포 독성에 대한 연구는 거의 수행되지 않았다. 본 연구의 목적은 PM에 의한 각막 상피세포의 유해성을 평가하기 위한 in vitro 모델로서 쥐의 각막유래 상피세포(primary rat corneal epithelial cells, RCE cells)의 효능을 조사하는 것이다. 이를 위하여 쥐의 눈에서 분리한 1차 배양 세포가 각막 상피세포임을 pan-cytokeratin 염색을 통하여 확인하였으며, PM2.처리에 의한 각막 상피세포의 형태학적 변화를 동반한 생존율의 억제는 세포사멸 유도와 관련이 있었다. 또한 PM2.가 처리된 각막 상피세포에서는 ROS의 생성이 증가되었으며, 이는 미토콘드리아 기능 장애와 연관성이 있었다. 이와 함께 PM2.는 각막 상피세포에서 NO, TNF-α, IL-1β 및 IL-6를 포함한 염증 매개인자 및 사이토카인의 생성을 증가시켰다. 아울러 heatmap 분석을 통해 BLNK, IL-1RA, Itga2b, ABCb1a 및 Ptgs2가 미세먼지 유도 안구 질환의 임상 치료를 위한 잠재적인 표적 유전자로서 제시하였다. 결론적으로 본 연구의 결과는 1차 쥐의 각막 상피세포가 PM2.에 의한 각막 상피세포 병리기전 연구에 유용한 모델일 수 있으며, 산화적 및 염증성 반응이 PM2.유발 안구 표면 장애 유도에 핵심적인 역할을 함을 알 수 있었다.

클로로필 a가 UVB 유도성 산화적 스트레스와 matrix metalloproteinases (MMPs) 활성화 및 콜라겐 합성에 미치는 영향 (Effects of Chlorophyll a on UVB-induced Cellular Responses and Type I pN Collagen Synthesis in vitro)

  • 전희영;김정기;서대방;이상준
    • 한국식품과학회지
    • /
    • 제41권6호
    • /
    • pp.700-705
    • /
    • 2009
  • 본 연구에서는 식물에서 추출된 천연 클로로필 a를 이용하여 UVB에 의해 유도되는 산화적 손상 및 MMPs의 변화를 평가하고, 콜라겐의 합성에 미치는 영향을 알아보고자 하였다. 본 연구의 결과를 종합해 보면, 클로로필 a는 UVB에 의해 유도되는 ROS의 발생을 저해함으로써 그로부터 발생할 수 있는 일련의 물리화학적 혹은 생물학적 신호 전달을 방지하는 효능을 가지며, 지질 과산화 역시 억제하는 효과를 지닌다. 또한 피부의 콜라겐, 탄력 섬유 등 기질 단백질을 분해하는 효소인 MMPs의 발현 또는 활성을 억제하고 콜라겐의 합성을 촉진하는 효과를 보여 피부 광노화에 대한 예방제로서 클로로필의 임상 적용의 가능성을 확인 할 수 있었다. 현재까지 보고된 피부에 대한 클로로필의 효능은 DMBA 또는 TPA 등의 화학 물질로 유발된 피부암을 예방하거나 억제하는 효능에 대한 연구가 대부분이었으며, 본 연구와 같이 UVB에 의해 유발되는 세포 반응에 대한 클로로필 a의 효능연구는 체계적으로 이루어진 바가 없다. 따라서 본 연구는 클로로필의 피부암 예방 및 치료뿐 아니라 피부 노화의 예방 관점에서 클로로필의 효능을 검토하고 확인했다는 것에서 의미가 있다. 그러나 본 연구 결과만으로는 클로로필의 농도 의존적 효능에 대한 명확한 판단을 하기에 부족한 부분이 있어 클로로필 효능의 농도 의존성에 대한 검토가 필요할 것으로 보여진다. 클로로필의 농도에 따른 효능 및 세포 독성의 상관성을 파악하고 동물, 인체효능 용량에 대한 연구를 통해 가장 바람직한 효능을 나타내는 클로로필의 농도를 산정하기 위한 검토가 이루어져야 할 것이다. 또한 피부 노화 예방을 위한 유용한 소재로서 클로로필의 임상적 활용 가능성을 판단하기 위해서는 동물, 인체 시험을 통한 클로로필의 효능 검증이 체계적으로 진행되어야 할 것으로 보여진다.

Activation of Murine Macrophage Cell Line RAW 264.7 by Korean Propolis

  • Han, Shin-Ha;Sung, Ki-Hyun;Yim, Dong-Sool;Lee, Sook-Yeon;Cho, Kyung-Hae;Lee, Chong-Kil;Ha, Nam-Joo;Kim, Kyung-Jae
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.895-902
    • /
    • 2002
  • Monocytes and macrophages playa major role in defense mechanism of the host response to tumor, in part through the secretion of several potent products and macrophage cytokines. Monocytes and tissue macro phages produce at least two groups of protein mediators of inflammation, interleukin 1 (IL-1) and tumor necrosis factor (TNF). Recent studies emphasizes that TNF and IL-1 modulate the inflammatory function of endothelial cells, leukocytes, and fibroblasts. In this study, our work is directed toward studying the in vitro effects of Korean propolis on the ability to induce cellular and secretory responses in murine macrophage cell line, RAW 264.7. It was found that Water Extract of Korean Propolis (WEP) could activate macro phages by producing cytokines. The production of the macrophage cytokines, IL-1 and TNF-$\alpha$, by RAW 264.7 treated with WEP was examined from 2.5 $\mu\textrm{g}$/ml up to 25 $\mu\textrm{g}$/ml with dose dependent manner. Nitric oxide (NO) production was also increased when cells were exposed to combination of LPS and WEP from 2.5 $\mu\textrm{g}$/ml up to 25 $\mu\textrm{g}$/ml. At high dose of WEP (50 to 100 $\mu\textrm{g}$/ml) used to prescribe for anti-inflammatory and analgesic medicine showed inhibition of NO production in LPS-stimulated macrophage. Besides cytokine production, NO release, surface molecule expression and cell morphologic antigen expression were increased in response to the stimulation by WEP. These results suggested WEP may function through macrophage activation.

가미활혈탕이 Rheumatoid arthritis 관련 싸이토카인 및 전사인자에 미치는 영향 (Inhibitory Effect of Gamihwalhyeol-tang on Inflammatory Cytokine and NF-kB, AP-1 Activation in Human Synovial Cells)

  • 신상문;박종오;유동열;김동희
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.165-176
    • /
    • 2003
  • The present study was carried out to examine the effects of Kami-hwal-hyeol-tang(KHHT) on the immune responses of synoviocyte cells prepared from the rheumatoid arthritis patients, and also on the collagen-mediated arthritis in mouse model. Several experiments were performed in vitro and in vivo to analyse the immunomodulatory effects of KHHT, and the major findings are summarized below: 1. KHHT did not show the cytotoxicity against mLFCs and hFLSs. 2. KHHT inhibited gene expression of IL-1β, IL-6, TNF-α, COX-2, NOS and GM-CSF in hFLSs. Furthermore, KHHT-treated hFLSs showed reduced production of pro-inflammatory cytokines such as IL-1β and IL-6 compared to the control cells. 3. KHHT treatment of hFLSs inhibited the binding activity of NF-kB and AP-1 to their consensus DNA sequences. 4. KHHT treatment(400 ㎍/㎖) of hFLSs significantly inhibited hFLSs proliferations compared to the control cells. 5. KHHT significantly reduced the production of ROS in hFLSs compared to the control cells. The present data show that KHHT plays an important role for the regulation of AP-1 and NF-kB gene expression. Also, it was found that KHHT has anti-arthritis effect. Further studies of KHHT in relation to RA therapeutics may provide important information to develop drugs to treat this disease.

Protective Role of Purified Cysteine Proteinases against $Fasciola$ $gigantica$ Infection in Experimental Animals

  • EL-Ahwany, Eman;Rabia, Ibrahim;Nagy, Faten;Zoheiry, Mona;Diab, Tarek;Zada, Suher
    • Parasites, Hosts and Diseases
    • /
    • 제50권1호
    • /
    • pp.45-51
    • /
    • 2012
  • Fascioliasis is one of the public health problems in the world. Cysteine proteinases (CP) released by $Fasciola$ $gigantica$ play a key role in parasite feeding, migration through host tissues, and in immune evasion. There has been some evidence from several parasite systems that proteinases might have potential as protective antigens against parasitic infections. Cysteine proteinases were purified and tested in vaccine trials of sheep infected with the liver fluke. Multiple doses (2 mg of CP in Freund's adjuvant followed by 3 booster doses 1 mg each at 4 week intervals) were injected intramuscularly into sheep 1 week prior to infect orally with 300 $F.$ $gigantica$ metacercariae. All the sheep were humanely slaughtered 12 weeks after the first immunization. Changes in the worm burden, ova count, and humoral and cellular responses were evaluated. Significant reduction was observed in the worm burden (56.9%), bile egg count (70.7%), and fecel egg count (75.2%). Immunization with CP was also found to be associated with increases of total IgG, $IgG_1$, and $IgG_2$ ($P$<0.05). Data showed that the serum cytokine levels of pro-inflammatory cytokines, IL-12, IFN-${\gamma}$, and TNF-${\alpha}$, revealed significant decreases ($P$<0.05). However, the anti-inflammatory cytokine levels, IL-10, TGF-${\beta}$, and IL-6, showed significant increases ($P$<0.05). In conclusion, it has been found that CP released by $F.$ $gigantica$ are highly important candidates for a vaccine antigen because of their role in the fluke biology and host-parasite relationships.

자소엽(紫蘇葉) 에탄올 추출물이 RBL-2H3 비만세포에서 제 1형 알레르기 반응 조절에 미치는 효과 (Effect of Perillae Folium Extract on Regulation of Type 1 Allergic Response in RBL-2H3 Cells)

  • 곡수영;유선애;이승연
    • 대한한방소아과학회지
    • /
    • 제26권1호
    • /
    • pp.36-45
    • /
    • 2012
  • Objectives Perillae Folium (PF) has been widely used in Korean herbal medicines used for treatment of acute and chronic inflammatory diseases, such as rhinitis, asthma, and enteritis. In this study, to investigate the protective effect of PF on type 1 allergic response, we determined whether PF inhibits early or late allergic responses. Methods The effect of PF was analyzed by ELISA,. RT-PCR and Western blot in RBL-2H3 cells. Levels of ${\beta}$-hexosaminidase, interleukin (IL)-4 and TNF-${\alpha}$ were measured using enzyme-linked immunosorbent assays (ELISAs). mRNA levels of cytokines and enzymes were analyzed with RT-PCR. Signal transduction was analyzed with Western blot. Results We found that PF suppressed ${\beta}$-hexosaminidase release in RBL-2H3 by the IgE-DNP-HSA stimulation. PF also significantly inhibited enzymes level, such as COX-1, COX-2, iNOS, and HDC2, along with reduced cytokine levels, such as IL-2, IL-3, IL-4, IL-6, IL-13, and TNF-${\alpha}$ in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, and $I{\kappa}B{\alpha}$. Conclusions Our results indicate that PF protects against type 1 allergic response and exert an anti-inflammatory effect through the inhibition of degranulation and expression of cytokines and enzymes via the suppression of signal transduction.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • 제22권3호
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Serial Changes in Mannose-Binding Lectin in Patients with Sepsis

  • Huh, Jin Won;Song, Kyuyoung;Kim, Hwa Jung;Yum, Jung-Sun;Hong, Sang-Bum;Lim, Chae-Man;Koh, Younsuck
    • Tuberculosis and Respiratory Diseases
    • /
    • 제81권4호
    • /
    • pp.305-310
    • /
    • 2018
  • Background: Mannose-binding lectin (MBL) deficiency leads to increased susceptibility to infection. We investigated whether serial changes in MBL levels are associated with the prognosis of patients diagnosed with septic shock, and correlated with cytokine levels. Methods: We enrolled 131 patients with septic shock in the study. We analyzed the serum samples for MBL and cytokine levels at baseline and 7 days later. Samples on day 7 were available in 73 patients. Results: We divided the patients with septic shock into four groups according to serum MBL levels (< $1.3{\mu}g/mL$ or ${\geq}1.3{\mu}g/mL$) on days 1 and 7. Patients with low MBL levels on day 1 and high MBL levels on day 7 showed a favorable prognosis for 28-day survival (odds ratio, 1.96, 95% confidence interval, 1.10-2.87; p=0.087). The high MBL group on day 7 showed a significant decrease in monocyte chemoattractant protein 1, interleukin (IL)-$1{\beta}$, IL-6, IL-8, interferon-${\gamma}$, and granulocyte macrophage colony-stimulating factor levels compared with the low MBL group on day 7. Conclusion: The increase in MBL levels of patients with septic shock may suggest a favorable prognosis and attenuate pro-inflammatory and anti-inflammatory responses.

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

  • Go, Ahreum;Ryu, Yun-Kyoung;Lee, Jae-Wook;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제21권6호
    • /
    • pp.481-486
    • /
    • 2013
  • Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents.