• Title/Summary/Keyword: Anti-inflammatory responses

Search Result 496, Processing Time 0.025 seconds

Vitamin C Is an Essential Factor on the Anti-viral Immune Responses through the Production of Interferon-${\alpha}/{\beta}$ at the Initial Stage of Influenza A Virus (H3N2) Infection

  • Kim, Yejin;Kim, Hyemin;Bae, Seyeon;Choi, Jiwon;Lim, Sun Young;Lee, Naeun;Kong, Joo Myung;Hwang, Young-Il;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.70-74
    • /
    • 2013
  • L-ascorbic acid (vitamin C) is one of the well-known antiviral agents, especially to influenza virus. Since the in vivo antiviral effect is still controversial, we investigated whether vitamin C could regulate influenza virus infection in vivo by using Gulo (-/-) mice, which cannot synthesize vitamin C like humans. First, we found that vitamin C-insufficient Gulo (-/-) mice expired within 1 week after intranasal inoculation of influenza virus (H3N2/Hongkong). Viral titers in the lung of vitamin C-insufficient Gulo (-/-) mice were definitely increased but production of anti-viral cytokine, interferon (IFN)-${\alpha}/{\beta}$, was decreased. On the contrary, the infiltration of inflammatory cells into the lung and production of pro-inflammatory cytokines, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-${\alpha}/{\beta}$, were increased in the lung. Taken together, vitamin C shows in vivo antiviral immune responses at the early time of infection, especially against influenza virus, through increased production of IFN-${\alpha}/{\beta}$.

The Effect of Microbial Extracts on the Cell Activation and Inhibition Associated with Atopic Dermatitis

  • Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • Atopic dermatitis (AD) is an inflammatory, relapsing, chronic skin disease and lesions in AD are frequently colonized with Staphylococcus aureus (S. aureus). Activation of T cells and IgE production by staphylococcal enterotoxins B (SEB) plays a crucial role in the pathogenesis of AD. Enterococcus faecalis (E. faecalis) is a nonpathogenic bacterium and produces the probiotic products that have been shown to have inhibitory effects on inflammatory responses. In present study, we carried out to assess the anti-inflammatory role of lyzed E. faecalis against the damaging effects of SEB on AD related immune responses. Furthermore, we attempted to determine whether the co-cultured lyzed E. faecalis can influence the colonization of S. aureus. As a result, we identified the effect of E. faecalis lysate as a potent therapeutic agent for atopic dermatitis (AD). E. faecalis lysate reduces the productions of total IgE and cytokines of AD-related immune cells in response to SEB stimulation. The proliferation of S. aureus was also inhibited by E. faecalis lysate. In conclusions, E. faecalis lysate may improve the skin-defense system disturbed by atopic condition, and may prevent subsequent secondary infection of S. aureus and development of AD.

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari;Nikita Basnet;Ji Woong Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

Effects of Gamichangbaek-san(Jiaweichangbai-san) on Anti-inflammatory, Analgesic, Anti-febrile Activities and Immune Responses in Carrageenan-induced Arthritic Animals (가미창백산(加味蒼栢散)이 Carrageenan유발 동물모델 관절염의 소염, 진통, 해열 및 면역에 미치는 영향)

  • Han, Young-Gyu;Park, Young-Hoi;Keum, Dong-Ho;Lee, Myeong-jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.15 no.1
    • /
    • pp.127-141
    • /
    • 2005
  • Objectives : This study was performed to investigate the effects of Gamichangbaek-san(Jiaweichangbai-san) on anti-inflammatory, analgesic, anti-febrile and immune response on the arthritis of carrageenan-induced animals. Methods and Materials : Rats were classified into control and sample groups which are 7 individuals each for the experiments about anti-inflammatory and anti-febrile. Each of the 7 mice were classified into normal, control, sample groups for the analgesic experiments. Gamichangbai-san(Jiaweichangbai-san) was administered to sample group and normal saline was administered to normal and control groups. Arthritis was induced by injection of 1% carrageenan $0.1m{\ell}$ and Gamichangbaek-san(Jiaweichangbai-san) was administered after 30 minutes. The change of edema in Carrageenan-induced Arthritic Rats' Paws was measured after 1 hour and 5 hours from the injection of carraqeenan with Plethysmometer(7150, UGO BASILE, ltaly) by Winter' method. WBC, Lymphocyte and ESR were measured by heart puncture and CD4+ T cell, CD8+ T cell and CD4+/CD8+ T cell ratio were measured from the spleen tissue. Writhing syndrom was measured with Tail flick unit(UGO BASILE, Italy) in the experiments conducted to check the analgesic activity. The temperature of the paws of carrageenan-induced arthritic rats was measured by Laser thermometer. Rectal temperature was measured by Yeast's method in anti-febrile experiments. Immune response was measured by CD4+, CD8+ T cell ratio and CD4+/CD8+ T cell ratio. Results : 1. It was recognized that Gamichangbaek-san(Jiaweichangbai-san) decreased the increase rate of Paw Edema effectively with statistical significance. 2. It was recognized that Gamichangbaek-san(Jiaweichangbai-san) decreased WBC, Lymphocyte and ESR with statistically high significance. 3. It was recognized that Gamichangbaek-san(Jiaweichangbai-san) did not show significant analgesic effect, but the Pressure pain threshold of the paws was increased with statistical significance. 4. It was recognized that Gamichangbaek-san(Jiaweichangbai-san) decreased rectal temperature effectively and had an anti-febrile effect about the febrile of a joint with statistical significance. 5. It was recognized that Gamichangbaek-san(Jiaweichangbai-san) increased CD4+ T cell ratio with statistically high significance and increased CD+8 T cell ratio with statistical non significance but increased CD4+/CD8+ T cell ratio effectively with statistical significance, too. Conclusions : According to the above results, it can be concluded Gamichangbaek-san(Jiaweichangbai-san) showed the treatment effects on the artificial arthritis resulted from carageenan in rats and it is suggested that more interest and study in the security for the clinical use were needed.

4-CMTB Ameliorates Ovalbumin-Induced Allergic Asthma through FFA2 Activation in Mice

  • Lee, Ju-Hyun;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.427-433
    • /
    • 2021
  • Free fatty acid receptor 2 (FFA2, also known as GPR43), a G-protein-coupled receptor, has been known to recognize short-chain fatty acids and regulate inflammatory responses. FFA2 gene deficiency exacerbated disease states in several models of inflammatory conditions including asthma. However, in vivo efficacy of FFA2 agonists has not been tested in allergic asthma. Thus, we investigated effect of 4-chloro-α-(1-methylethyl)-N-2-thiazoylylbenzeneacetanilide (4-CMTB), a FFA2 agonist, on antigen-induced degranulation in RBL-2H3 cells and ovalbumin-induced allergic asthma in BALB/c mice. Treatment of 4-CMTB inhibited the antigen-induced degranulation concentration-dependently. Administration of 4-CMTB decreased the immune cell numbers in the bronchoalveolar lavage fluid and suppressed the expression of inflammatory Th2 cytokines (IL-4, IL-5, and IL-13) in the lung tissues. Histological studies revealed that 4-CMTB suppressed mucin production and inflammation in the lungs. Thus, results proved that FFA2 functions to suppress allergic asthma, suggesting 4-CMTB activation of FFA2 as a therapeutic tool for allergic asthma.

Protective Effects of a Novel Lactobacillus brevis Strain with Probiotic Characteristics against Staphylococcus aureus Lipoteichoic Acid-Induced Intestinal Inflammatory Response

  • Kim, Won-Ju;Hyun, Jun-Hyun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.205-211
    • /
    • 2022
  • Probiotics can effectively modulate host immune responses and prevent gastrointestinal diseases. The objective of this study was to investigate the probiotic characteristics of Lactobacillus brevis KU15152 isolated from kimchi and its protective potential against intestinal inflammation induced by Staphylococcus aureus lipoteichoic acid (aLTA). L. brevis KU15152 exhibited a high survival rate in artificial gastric and bile environments. Additionally, the adhesion capability of the strain to HT-29 cells was higher than that of L. rhamnosus GG. L. brevis KU15152 did not produce harmful enzymes, such as β-glucuronidase, indicating that it could be used as a potential probiotic. The anti-inflammatory potential of L. brevis KU15152 was determined in HT-29 cells. Treatment with L. brevis KU15152 suppressed the production of interleukin-8 without inducing significant cytotoxicity. The downregulatory effects of L. brevis KU15152 were involved in the suppression of nuclear factor-kappa B activation mediated by the extracellular signal-regulated kinase and Akt signaling pathways. Collectively, these data suggest that L. brevis KU15152 can be used in developing therapeutic and prophylactic products to manage and treat aLTA-induced intestinal damage.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

Inhibitory effects of Broussonetia kazinoki twig extract on allergic inflammatory reactions in TNF-𝛼/IFN-𝛾-stimulated HaCaT and IgE-sensitized RBL-2H3 cells (TNF-𝛼/IFN-𝛾로 자극된 HaCaT 및 IgE로 감작된 RBL-2H3 세포에서 닥나무 가지 추출물의 알러지 염증반응 억제 효과)

  • Won-Bin Bae;Eun-Hye Kim;Min-Ju Kim;Seun-Ah Yang
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.307-314
    • /
    • 2024
  • Broussonetia kazinoki twig extract (BKT) is recognized for its antioxidant and anti-cancer effects and natural whitening properties. So, it is used as a raw material for cosmetics. B. kazinoki twig is also an edible raw material. B. kazinoki has been used in Asia for paper production and oriental medicine, has anti-diabetic effects, and contains various flavonoids and alkaloids. In this study, to evaluate the efficacy of BKT on allergic skin inflammatory responses, we investigated its effects on factors related to skin inflammation in HaCaT keratinocytes and allergic responses in RBL-2H3 cells. There was no cytotoxicity of the 70% ethanol extract against HaCaT and RBL-2H3 cells. In HaCaT cells, stimulation with tumor necrosis factor-alpha (TNF-𝛼) and interferon-gamma (IFN-𝛾) increased the production of several chemokines, including thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), and regulated on activation, normal T cell expressed and secreted (RANTES). However, it was observed that this elevation was notably mitigated in a concentration-dependent manner upon treatment with BKT. Furthermore, BKT treatment demonstrated a significant reduction of 𝛽-hexosaminidase and inflammatory cytokines TNF-𝛼 and IL-4 in IgE-sensitized RBL-2H3 cells. Thus, it is expected that BKT can be used as a natural cosmetic and food ingredient that effectively suppresses allergic inflammatory reactions.

Carpomitra costata Extract Alleviates Lipopolysaccharide-induced Neuroinflammatory Responses in BV2 Microglia through the Inactivation of NF-κB Associated with the Blockade of the TLR4 Pathway and ROS Generation

  • Park, Cheol;Cha, Hee-Jae;Hong, Su-Hyun;Kim, Suhkmann;Kim, Heui-Soo;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • In this study, we investigated the inhibitory potential of an ethanol extract of Carpomitra costata (EECC) (Stackhouse) Batters, a brown alga, against neuroinflammatory responses in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results showed that EECC significantly suppressed the LPS-induced secretion of pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, with no significant cytotoxic effects. EECC also inhibited the LPS-induced expression of their regulatory enzymes, such as inducible NO synthase and cyclooxygenase-2. In addition, EECC downregulated the LPS-induced expression and production of the proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β. In the mechanistic assessment of the antineuroinflammatory effects, EECC was found to inhibit the nuclear translocation and DNA binding of nuclear factor-kappa B (NF-κB) by disrupting the degradation of the κB-α inhibitor in the cytoplasm. Moreover, EECC effectively suppressed the enhanced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88, as well as the binding of LPS to TLR4 in LPS-treated BV2 cells. Furthermore, EECC markedly reduced the LPS-induced generation of reactive oxygen species (ROS), demonstrating a strong antioxidative effect. Collectively, these results suggest that EECC repressed LPS-mediated inflammatory action in the BV2 microglia through the inactivation of NF-κB signaling by antagonizing TLR4 and/or preventing ROS accumulation. While further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant activity of EECC, the current findings suggest that EECC has a potential advantage in inhibiting the onset and treatment of neuroinflammatory diseases.