• Title/Summary/Keyword: Anti-inflammatory responses

Search Result 492, Processing Time 0.03 seconds

Dihydrobenzofuran Neolignans Isolated from Euonymus alatus Leaves and Twigs Attenuated Inflammatory Responses in the Activated RAW264.7 Macrophage Cells

  • Kim, Na-Hyun;Yang, Min Hye;Heo, Jeong-Doo;Sung, Sang Hyun;Jeong, Eun Ju
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Anti-inflammatory effects of dihydrobenzofuran neolignans isolated from Euonymus alatus leaves and twigs were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Six neolignans, (+)-simulanol (1), (+)-dehydrodiconiferyl alcohol (2), (-)-simulanol (3), (-)-dehydrodiconiferyl alcohol (4), (+)-dihydrodehyrodiconiferyl alcohol (5), threo-buddlenol B (6) effectively inhibited the production of nitric oxide (NO) induced by LPS, and the activity of iNOS. (-)-dehydrodiconiferyl alcohol (4), which showed the most potent inhibitory activity, attenuated the activity of iNOS enzyme and also the expression of iNOS and COX-2 proteins. The subsequent production of pro-inflammatory cytokines, interleukin-$1{\beta}$, interleukin-6, tumor necrosis factor-${\alpha}$ and prostaglandin E2 were also inhibited by the pretreatment of RAW264.7 cells with (-)-dehydrodiconiferyl alcohol (4). These neolignans are thought to contribute to anti-inflammatory effects of E. alatus, and expected to be potential candidates to prevent/treat inflammation-related diseases.

The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Hwang, Ji-Young;Ko, Yong-Hyun;Seo, Ji-Yeon;Lee, Bo-Ram;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.268-282
    • /
    • 2016
  • In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$), and their downstream transcription factor, nuclear factor-kappa B ($NF-{\kappa}B$). EUE also blocked the nuclear translocation of $NF-{\kappa}B$ and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and $PGE_2$ production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and $GSK-3{\beta}$, consequently suppressing $NF-{\kappa}B$ activation and inducing Nrf2-dependent HO-1 activation.

Flagellin-Stimulated Production of Interferon-β Promotes Anti-Flagellin IgG2c and IgA Responses

  • Kang, Wondae;Park, Areum;Huh, Ji-Won;You, Gihoon;Jung, Da-Jung;Song, Manki;Lee, Heung Kyu;Kim, You-Me
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.251-263
    • /
    • 2020
  • Flagellin, a major structural protein of the flagellum found in all motile bacteria, activates the TLR5- or NLRC4 inflammasome-dependent signaling pathway to induce innate immune responses. Flagellin can also serve as a specific antigen for the adaptive immune system and stimulate anti-flagellin antibody responses. Failure to recognize commensal-derived flagellin in TLR5-deficient mice leads to the reduction in anti-flagellin IgA antibodies at steady state and causes microbial dysbiosis and mucosal barrier breach by flagellated bacteria to promote chronic intestinal inflammation. Despite the important role of anti-flagellin antibodies in maintaining the intestinal homeostasis, regulatory mechanisms underlying the flagellin-specific antibody responses are not well understood. In this study, we show that flagellin induces interferon-β (IFN-β) production and subsequently activates type I IFN receptor signaling in a TLR5- and MyD88-dependent manner in vitro and in vivo. Internalization of TLR5 from the plasma membrane to the acidic environment of endolysosomes was required for the production of IFN-β, but not for other pro-inflammatory cytokines. In addition, we found that anti-flagellin IgG2c and IgA responses were severely impaired in interferon-alpha receptor 1 (IFNAR1)-deficient mice, suggesting that IFN-β produced by the flagellin stimulation regulates anti-flagellin antibody class switching. Our findings shed a new light on the regulation of flagellin-mediated immune activation and may help find new strategies to promote the intestinal health and develop mucosal vaccines.

A Study on the Anti-inflammatory and Anti-allergic Effect of Salvia plebeia R. extracts (배암차즈기(Salvia plebeia R.) 추출물의 항염 및 항 알레르기 효과)

  • Jo, Sun-Young;Lee, Ui-Young;Kim, Eun-Young;Lee, Sue-Jung;Her, Jin-Woo;Yoon, Taek-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.1
    • /
    • pp.31-37
    • /
    • 2010
  • The Salvia plebeia R. which is the biennial plant belonging to the Labiatae department, grows naturally in the Korea entire area. Presently, its extract (SPRE) is known to have an anti-inflammation and anti-allergy activity, but there are a few evidences about it. SPRE inhibits pro-inflammatory cytokine such as TNF-$\alpha$ and IL-6 as well as nitric oxide (NO) production in lipopolysaccharide (LPS) treated- macrophages. The co-administration of SPRE during OVA sensitization significantly reduced total IgE levels in mice. The mice who received SPRE co-administered with OVA showed a significant increase in serum OVA-specific IgG2a/b levels. Spleen-cell cultures harvested from OVA-sensitized mice showed a significant decrease in Th2 cytokine levels with a concomitant increase in Th1 cytokine levels only when SPRE co-administered with OVA. These results demonstrate that SPRE can control the LPS-induced inflammatory reaction and prevent antigen-induced Th2 immune responses in mice.

In Vitro Evidence of Anti-Inflammatory and Anti-Obesity Effects of Medium-Chain Fatty Acid-Diacylglycerols

  • Yu, Seungmin;Choi, Jong Hun;Kim, Hun Jung;Park, Soo Hyun;Go, Gwang-woong;Kim, Wooki
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1617-1627
    • /
    • 2017
  • Dietary approaches using structured lipids, including medium-chain fatty acids and diacylglycerols, have been adopted for the prevention of obesity-induced chronic inflammation. In an extension to previous studies, medium-chain fatty acid-diacylglycerol enriched dietary oil (MCDG) was prepared by interesterification of canola oil and medium-chain fatty acid-triacylglycerols. The consequent MCDG product was applied to RAW264.7 macrophages followed by the assessment of multiple inflammatory responses. Compared with conventionally used canola and olive oil controls, MCDG suppressed macrophage phagocytosis, as assessed by the uptake of microsphere beads. Furthermore, the production of IL-6 and $TNF-{\alpha}$, transcription of COX-2 and iNOS, and expression of CD80 on cell surfaces were downregulated by MCDG in LPS-stimulated macrophages. Subsequently, differentiated 3T3-L1 adipocytes were evaluated for proinflammatory cytokine production and lipid accumulation. IL-6 production was marginally affected and lipid accumulation was inhibited by MCDG. Taken together, these results suggest that MCDG has potential as an alternative oil for cooking in order to prevent obesity-induced inflammation.

Anti-inflammatory Effect of an Ethanolic Extract of Myagropsis yendoi in Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Salih, Sarmad Ali;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Marine brown algae have been identified as a rich source of structurally diverse bioactive compounds. Whether Myagropsis yendoi ethanolic extracts (MYE) inhibit inflammatory responses was investigated using lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. MYE inhibited LPS-induced nitric oxide (NO) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase in BV-2 cells. MYE also reduced the production of pro-inflammatory cytokines in LPS-stimulated BV-2 cells. LPS-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) transcriptional activity and NF-${\kappa}B$ translocation into the nucleus were significantly inhibited by MYE treatment through preventing degradation of the inhibitor ${\kappa}B-{\alpha}$. Moreover, MYE inhibited the phosphorylation of AKT, ERK, JNK, and p38 mitogen-activated protein kinase in LPS-stimulated BV-2 cells. These results indicate that MYE is a potential source of therapeutic or functional agents for neuroinflammatory diseases.

Sipyukmiryuki-eum Exhibits Anti-inflammatory and Anti-oxidative Effect viaActivation of Nrf2/HO-1 Signaling in Lipopolysaccharide-stimulated RAW264.7 Macrophages (Lipopolysaccharide로 자극된 RAW 264.7 대식세포에서 Nrf2/HO-1 경로 활성화를 통한 십육미류기음(十六味流氣飮) 추출물의 항염증 및 항산화 효과)

  • Kwon, Da Hye;Hwang-Bo, Hyun;Kim, Min Young;Ji, Seon Yeong;Hong, Su Hyun;Park, Cheol;Hwang, Hye-Jin;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.27 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • Inflammatory and oxidative stimuli play a critical role not only in the process of transforming normal cells into cancer cells, but also in the proliferation process of cancer cells. Sipyukmiryukieum (SYMRKU), a traditional Korean herb-combined remedy, is composed of 16 kinds of herbal medicines, which were recorded for "Ongjeo" treatment in "Dongeuibogam". In this study, we investigated the inhibitory effect of SYMRKU against inflammatory and oxidative responses in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Our results showed that SYMRKU significantly inhibited LPS-induced secretion of pro-inflammatory mediators including nitric oxide (NO) and prostaglandin $E_2$ without showing any significant cytotoxicity. Consistent with these results, SYMRKU down-regulated LPS-induced expression of their regulatory enzymes such as inducible NO synthase and cyclooxygenase-2. SYMRKU also inhibited LPS-induced production and expression of pro-inflammatory cytokines such as tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$ and IL-6. In addition, SYMRKU significantly reduced the production of reactive oxygen species by LPS and showed a strong, which was associated with induction of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 expression. Although further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant capacity of SYMRKU, the findings of the current study suggest that SYMRKU may have potential benefits by inhibiting the onset and/or treatment of inflammatory and/or oxidative diseases.

Anti-inflammation effect of extract from Zostera marina using UVB-induced damage on keratinocytes (잘피 추출물의 UVB로 손상을 유도한 각질형성세포에 대한 항염 효능)

  • Kim, Bo-Ae
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.87-91
    • /
    • 2016
  • Objectives : In order to confirm whether extracts of different parts of Zostera marina (ZM), a marine flowering plant, can be used as cosmetic ingredients, this study evaluated their cytotoxicity and cytoprotective effects against ultraviolet B (UVB). Inflammatory responses induced by UV stimuli are also associated with the aging of the skin.Methods : We investigated the effects of ZM extracts on cells through the water soluble tetrazolium salt-1(WST-1) assay for cell viability. In order to investigate the anti-inflammatory effects, we evaluated the suppression of Cyclooxygenase-2 (COX-2) expression by ZM extracts in HaCaT cells with UVB-induced damages, and also evaluated the production of Prostaglandin E2 (PGE2) in RAW 264.7 cells with LPS-induced damages.Results : High cell viabilities above 90% were observed in all types of ZM extracts, except for whole ZM extract at 0.5 mg/ml; in keratinocytes with UVB-induced damages, the cell viabilities were above 80% when treated with all types of ZM extracts. We confirmed their anti-inflammatory effects by investigating the suppression of inflammatory mediators. In keratinocytes with UVB-induced damages, COX-2 expression decreased in the experimental group treated with ZM extract. Similarly, in RAW 264.7 cells where inflammation was induced with LPS, the biosynthesis of PGE2 was inhibited.Conclusion : These results suggest that ethanol extracts from Zostera marina may have value as the potential anti-inflammatory medicinal plant. Also based on the abovementioned results, ZM extract protects skin cells from UV-induced damages, and thus can be used in topically applied products for skin protection.

Research of the Anti-inflammatory Effects of Forsythiae Fructus and Lonicerae Flos Ethanol Extracts (연교(連翹)와 금은화(金銀花) 에탄올 추출물의 항염증 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Choi, Yu-Jin;Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.33 no.3
    • /
    • pp.40-59
    • /
    • 2020
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos in vitro, which has been frequently used in inflammatory diseases. Methods: In this experiment, the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos were evaluated by checking the following substances of LPS-activated Raw264.7 cell: Prostaglandin E2 (PGE2), Nitric oxide (NO), Cyclooxygenase-2 (COX-2), inducible Nitric oxide synthase (iNOS), Interlukine-1β (IL-1β), Interlukine-6 (IL-6), Tumor necrosis factor-α (TNF-α), mitogen-activated protein kinase (MAPK), Inhibitor of kappa B-α (IκBα), Nuclear factor kappa B (NF-κB). And additionally measured reactive oxygen species (ROS) and free radicals to check the antioxidant effect of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos which affect inflammatory responses. Results: As a result of measuring anti-inflammatory efficacy, PGE2, NO, IL-1β, IL-6, TNF-α production amounts were reduced in the ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos groups compared with the control group, and decreased the amount of COX-2 mRNA, iNOS mRNA gene expression. Expression of MAPK (ERK, JNK, p38) pathway was decreased. Expression of IκBα was increased and NF-κB was decreased. It is demonstrated that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos, by reducing NF-κB, regulate the expression of the inflammatory genes and reduce the inflammatory mediators. Ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos also decreased ROS production and free radicals, which shown to have antioxidant efficacy and influence anti-inflammatory effects. Conclusions: These data suggest that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos can be used to treat various inflammatory diseases.

Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel (대두, 홍삼, 진피로 구성된 발효 추출물의 항염증 효능에 관한 연구)

  • Lee, Jong Rok;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.59-65
    • /
    • 2015
  • Objectives : Fermentation of herbs has been known to be helpful in improving the immune systems and protecting body against disease. The present study was conducted to evaluate anti-inflammatory effects of the fermentation extracts (FE) consisting of soybean, red ginseng andCitrus UnshiuPeel in lipopolysaccharide (LPS)-activated Raw264.7 cells.Methods : FE were prepared by the fermentation withBacillus Subtilisand then by extraction with ethanol (95%; prepared by the fermentation process). Cell viability was measured by MTT assay. Nitric oxide (NO) production was measured in culture media by Griess assay. The expression of nuclear factor (NF)-κB and inhibitory kappa B alpha (IκBα) was determined by Western blot.Results : LPS-induced production of NO and PGE2was dose-dependently decreased by the treatment of FE in Raw264.7 cells. These suppressive effects of FE on NO and PGE2production were related to the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. FE inhibited LPS-induced production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-1βin a dose-dependent manner. Furthermore, FE inhibited the NF-κB signaling pathway through the prevention of LPS-induced degradation of IκBαin cytosol and the nuclear translocation of NF-κB.Conclusions : These findings suggest that FE could have anti-inflammatory effects on LPS-induced inflammatory responses in macrophages.