• Title/Summary/Keyword: Anti-inflammatory mechanism

Search Result 658, Processing Time 0.027 seconds

Anti-inflammatory mechanism of bee vemon in Raw 264.7 cells and Synoviocyte

  • Hwang, In-Young;Park, Hye-Ji;Kim, Kee-Hyun;Lee, Seung-Ho;Oh, Goo-Taeg;Hong, Jin-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.98.1-98.1
    • /
    • 2003
  • Bee venom (BY) has been utilized to relieve pain and to treat inflammatory diseases such as rheumatoid arthritis (RA). However, the molecular mechanism by which BV-induced anti-arthritis effect has been not reported yet. Therefore, in the present study we investigated anti-inflammatory effect of BV in a murine marcrophage cell line Raw 264.7 cell and synoviocyte obtained from RA patients. The present data showed that BV has a preventive effect on lipopolysaccharide (LPS) and sodium nitroprusside (SNP) induced induction of COX-2, cPLA2 and iNOS. (omitted)

  • PDF

The Ameliorative Effect of Rubi Fructus on DSS-induced Colitis in Mice

  • Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.34 no.3
    • /
    • pp.216-222
    • /
    • 2021
  • Ulcerative colitis (UC) is an inflammatory bowel disease and a chronic gastrointestinal disorder. Rubi Fructus (RF), the fruit of Rubus coreanus Miquel, is known to exert several pharmacological effects including anti-oxidative, anti-obesity and anti-inflammatory properties. However, the improving effect and mechanism of RF on intestinal inflammation is not been fully understood. The purpose of this study was to investigate the regulatory effect of RF on dextran sulfate sodium (DSS)-induced colitis in mice. We evaluated the effects of RF on DSS-induced clinical signs by analyzing weight loss and colon length. The inhibitory effects of RF on inflammatory mediators such as prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, as well as the activation of nuclear factor-κB (NF-κB), were determined in colitis tissue. Our data indicated that mice treated with DSS showed clinical symptoms of colitis, including weight loss, colon length decrease and diarrhea. However, we observed that RF treatment significantly improved these clinical symptoms of weight loss, colon length decrease and diarrhea induced by DSS. RF inhibited the enhanced levels of COX-2 and PGE2 caused by DSS. We also showed that the anti-inflammatory mechanism of RF by suppressing the activation of NF-kB in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from RF for UC treatment.

Ameliorative Effect of Pu-erh Tea on DSS-induced Colitis through Regulation of NF-κB Activation in Mice

  • Jeon, Yong-Deok;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.248-254
    • /
    • 2021
  • Ulcerative colitis (UC), chronic inflammatory bowel disease, is characterized by severe inflammation in the colon. Tea is one of the most popular beverages consumed worldwide. Pu-erh tea, a unique Chinese tea produced by microbial activities, possesses a broad range of health-promoting effects, including anti-aging, anti-Alzheimer's disease, antioxidation and anti-obesity. However, the inhibitory effect of Pu-erh tea on intestinal inflammation and the underlying mechanism remain unclear. The present study was designed to evaluate the regulatory effect of Pu-erh tea extract (PTE) on dextran sulfate sodium (DSS)-induced colitis clinical signs by analyzing the weight loss and colon length in mice. The inhibitory effects of PTE on inflammatory mediators, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the activation of nuclear factor-κB (NF-κB) were also determined in DSS-treated colitis tissue. We observed that PTE treatment significantly inhibited the DSS-induced clinical symptoms of weight loss, decrease,in colon length, and colon tissue damage in mice. Moreover, PTE attenuated the DSS-induced levels of IL-6 and TNF-α in colon tissue. We also demonstrated the anti-inflammatory mechanism of PTE by suppressing the activation of NF-κB in DSS-treated colon tissues. Collectively, the findings provide experimental evidence that PTE may be effective in preventing and treatment of intestinal inflammatory disorders, including UC.

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.

Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade

  • Park, Geun-Soo;Kim, Jeong-Keun;Kim, Jae-Hong
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.232-237
    • /
    • 2016
  • Mulberry tree twigs (Ramulus mori) contain large amounts of oxyresveratrols and have traditionally been used as herbal medicines because of their anti-inflammatory properties. However, the signaling mechanism by which R. mori exerts its anti-inflammatory action remains to be elucidated. In this study, we observed that R. mori ethanol extracts (RME) exerted an inhibitory effect on the lipopolysaccharide (LPS)-induced production of the pro-inflammatory cytokine interleukin-6 (IL-6) in Raw264.7 macrophage cells. Additionally, RME inhibited IL-6 production by blocking the leukotriene B4 receptor-2 (BLT2)-dependent-NADPH oxidase 1 (NOX1)-reactive oxygen species (ROS) cascade, leading to anti-inflammatory activity. Finally, RME suppressed the production of the BLT2 ligands LTB4 and 12(S)-HETE by inhibiting the p38 kinase-cytosolic phospholipase A2-5-/12-lipoxygenase cascade in LPS-stimulated Raw264.7 cells. Overall, our results suggest that RME inhibits the 'BLT2 ligand-BLT2'-linked autocrine inflammatory axis, and that this BLT2-linked cascade is one of the targets of the anti-inflammatory action of R. mori.

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.

The Beneficial Effect of Platycodon grandiflorum on DSS-induced Colitis through Regulation of HIF-1α in Mice

  • Yang, Mi-Ok;Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.35 no.3
    • /
    • pp.391-398
    • /
    • 2022
  • Ulcerative colitis (UC) is a typical inflammatory colon disorder. Platycodon grandiflorum (PG) is known to exert various beneficial effects including anti-oxidative and anti-bacterial properties and improvements in liver function. However, the improving effect and mechanism of PG on intestinal inflammation are not fully understood. The present research was designed to investigate the effect of PG on the clinical signs of DSS-induced colitis in mice. The ameliorative effects of PG on inflammatory cytokine expression and the activation of hypoxia-inducible-factor (HIF)-1α in DSS-treated colon tissue were also determined. Our results showed that mice treated with DSS displayed the main clinical symptoms of colitis, including weight loss, bloody stools, decrease in colon length and diarrhea and PG treatment significantly improved the clinical features induced by DSS in mice. PG inhibited the increase in the levels of inflammatory cytokines caused by DSS in colon tissues. We also showed that the anti-inflammatory mechanism of PG involved suppressing the activation of HIF-1α in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from PG for UC treatment.

Anti-Inflammatory Effect of Bower Actinidia in LPS-Stimulated RAW264.7 Cells (LPS로 유도된 RAW264.7 염증모델에서 미후등의 항염증효과)

  • Kim, Young-Jun;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.30 no.4
    • /
    • pp.243-251
    • /
    • 2013
  • Objectives : Bower Actinidia has been widely used for treatment of inflammatory diseases, such as jaundice, cystolithiasis. However, the mechanism of its anti-inflammatory activity has not been clarified. In this study, we investigated the inhibitory effect of Bower Actinidia pharmacopuncture extract(BA) on LPS-induced inflammation. Methods : The effect of BA was analyzed by ELISA, RT-PCR and Western blotting in LPS-stimulated RAW264.7 cells. Results : We found that BA suppressed not only the mRNA expression of pre-inflammatory cytokines, cyclooxygenase-2(COX-2) and inducible nitric oxide synthase(iNOS), but also the phosphorylation of ERK, JNK and p38. Conclusions : These results suggest that BA exerts an anti-inflammatory effect through the regulation of the mitogen-activated protein kinase(MAPK) pathway, thereby decreasing production of pre-inflammatory cytokines.

Isomer specificity of conjugated linoleic acid (CLA): 9E,11E-CLA

  • Lee, Yun-Kyoung
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.326-330
    • /
    • 2008
  • Conjugated linoleic acids (CLA) were identified in 1980's, since then it has been intensively studied due to its various beneficial health effects such as anti-inflammatory, anti-atherogenic, anti-carcinogenic and anti-diabetic/obesity effects. Isomer specificity of a number of CLA isomers, especially predominant isomer 9Z,11E- and 10E,12Z-CLA, is now recognized. However, the less prevalent CLA isomers have not been well characterized. Recently, studies have reported the distinctively different effects of 9E, 11E-CLA in colon cancer cells, endothelial cells, and macrophage cells compared to the rest of CLA isomers. In this review, various effects of CLAs, especially anti-inflammatory and anti-atherogenic effects, will be discussed with focusing on the isomer-specific effects and potential mechanism of action of CLA. At last, recent studies about 9E,11E-CLA in in vitro and animal models will be discussed.

Palmitic acid inhibits inflammatory responses in lipopolysaccharide-stimulated mouse peritoneal macrophages

  • Lee, Ju-Young;Lee, Hye-Ja;Jeong, Ji-Ahn;Jung, Ji-Wook
    • Advances in Traditional Medicine
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Palmitic acid (PA) is one of free fatty acids, which is found from Gaultheria itoana Hayata and Sarcopyramis nepalensis. Although PA has a variety of pharmacological effects including mediates hypothalamic insulin resistance, induces IP-10 expression, and promote apoptotic activities, the anti-inflammatory mechanism of PA in mouse peritoneal macrophages remains unclear. In this study, we showed that PA exerted an anti-inflammatory action through suppression the production of tumor necrosis factor-$\alpha$, interleukin-6, cyclooxygenases-2 and nitric oxide in lipopolysaccaride-stimulated mouse peritoneal macrophages. Our study suggests an important molecular mechanism of PA, which might explain its beneficial effect in the regulation of inflammatory reactions.