• Title/Summary/Keyword: Anti-inflammatory factor

Search Result 1,542, Processing Time 0.025 seconds

A Comparative Study of Rose Hip Extracts on Osteoarthritis in Cartilage Cells (In vitro 실험모델에서 생산지에 따른 로즈힙 추출물의 골관절염 억제효과 비교 연구)

  • Nam, Da-Eun;Lee, Min-Jae;Kang, Namgil;Park, Geumduck;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1663-1670
    • /
    • 2012
  • The inhibitory effects of rose hip (Rosa canina L.) water extracts from two different manufactures on osteoarthritis was comparatively investigated in primary cultures of rat cartilage cells. To identify the effects of rose hip extracts against $H_2O_2$ (300 ${\mu}M$, 2 hr) treatment, cell survival was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell survival increased by rose hip extracts in the range of 100 to 600 ${\mu}g/mL$ of $H_2O_2$ treatment. To determine the anti-inflammatory effects of rose hip extracts, tumor necrosis factor alpha (TNF-${\alpha}$), nitric oxide (NO), and Cox-2 expression were measured after lipopolysaccharide (LPS) activation. TNF-${\alpha}$ level with rose hip extract treatment was decreased by 27.4% and 31.9% at 600 ${\mu}g/mL$ of $H_2O_2$ treatment. Nitric oxide was inhibited by rose hip extract at 100~600 ${\mu}g/mL$ of $H_2O_2$ treatment in a dose-dependent manner. In addition, Cox-2 protein expression was dose-dependently decreased while Cox-1 had no change in expression level. The severity of osteoarthritis is controlled by a balance between anabolic and catobolic factors in an articulation, therefore the expression of these factors plays a critical role in preventing osteoarthritis. In measuring anabolic factors, the genetic expression of collagen type I increased with rose hip treatment, while the genetic expression of collagen II did not change. In addition, the genetic expression of aggrecan (proteoglycan core protein) was significantly increased. while the genetic expression of matrix metalloproteinase (MMP) 3, 7 and 13, known catabolic factors, was significantly inhibited by treatment with rose hip extract. The expression of MMP13 was especially highly influenced. In conclusion, rose hip water extracts show inhibitory effects on cell death by $H_2O_2$ mediated oxidative stress, which is related to inhibitory effects on inflammation due to TNF-${\alpha}$, NO, and Cox-2. The ability of rose hip extracts to ameliorate inflammation in primary cultures of cartilage cells seems to associate with an increased genetic expression of specific anabolic factors, collagen type I and aggrecan, and a decreased expression of catabolic factors, MMPs (3, 7, and 13). However, there were no significant differences between rose hip extracts from the two manufacturers.

GATA-3 is a Key Factor for Th1/Th2 Balance Regulation by Myristicin in a Murine Model of Asthma (Myristicin이 Ovalbumin으로 유도한 천식 생쥐모델에서 Th1/Th2 Balance를 조절하는 GATA-3에 미치는 효과)

  • Lee, Kyu;Lee, Chang-Min;Jung, In-Duk;Jeong, Young-Il;Chun, Sung-Hak;Park, Hee-Ju;Choi, Il-Whan;Ahn, Soon-Cheol;Shin, Yong-Kyoo;Lee, Sang-Yull;Yeom, Seok-Ran;Kim, Jong-Suk;Park, Yeong-Min
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1090-1099
    • /
    • 2007
  • Myristicin, l-allyl-3,4-methylenedioxy-5-methoxybenzene, was one of the major essential oils of nutmeg. However, its anti-allergic effect in the Th1/Th2 immune response was poorly understood. Recently, it was shown that T-bet and GATA-3 was master Th1 and Th2 regulatory transcription factors. In this study, we have attempted to determine whether myristicin regulates Th1/Th2 cytokine production, T-bet and GATA-3 gene expression in ovalbumin (OVA)-induced asthma model mice. Myristicin reduced levels of IL-4, Th2 cytokine production in OVA-sensitized and challenged mice. In the other side, it increased $IFN-{\gamma}$, Th1 cytokine production in myristicin administrated mice. We also examined to ascertain whether myristicin could influence eosinophil peroxidase (EPO) activity. After being sensitized and challenged with ovalbumin (OVA) showed typical asthmatic reactions. These reactions included an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration into the lung tissue around blood vessels and airways, and the development of airway hyper-responsiveness (AHR). The administration of myristicin before the last airway OVA challenge resulted in a significant inhibition of all asthmatic reactions. Accordingly, these findings provide new insight into the immunopharmacological role of myristicin in terms of its effects in a murine model of asthma.