• Title/Summary/Keyword: Anti-inflammatory drug delivery system

Search Result 15, Processing Time 0.026 seconds

Characterization of Biocompatible Lipid-Based Vesicles Contained with Medicinal Herb Extracts

  • Lee, Kyu-Jin;Park, Sun young;Park, Geuntae
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.853-863
    • /
    • 2018
  • In order to increase the medicinal herbs efficiency of drug delivery, vesicles contained with medicinal herbs were prepared by phosphatidylcholines and surface active agent. Vesicles loaded with medicinal herbs were characterized by UV-spectroscopy, Zetasizer. The antioxidant activity of vesicles was measured by DPPH assay and ABTS radical scavenging assays. Also, an analysis was conducted to determine the effects of anti-inflammatory of vesicles contained medicinal herbs. In addition, the whitening effects of vesicles contained medicinal herbs extract were studied via tyrosinase inhibition assay. The results of vesicles were as follows. Vesicles appeared an average diameter of approximatively 164-599 nm. All studied vesicles contained with medicinal herbs showed antioxidant, anti-inflammatory and whitening effects in a dose-dependent manner. Therefore, this experiment achieves its purpose of synthesizing of vesicles. In conclusion, we recommended that the vesicles loaded with medicinal herbs have ability for anti-aging materials. Specifically, it will apply to cosmetic ingredients.

Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

  • Rui Chen;Mengting Wang;Qiaoling Qi;Yanli Tang;Zhenzhao Guo;Shuai Wu;Qiyan Li
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.20-37
    • /
    • 2023
  • Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.

Phonophoretic Delivery of Piroxicam (초음파를 이용한 피록시캄의 경피흡수)

  • Chung, Kyu-Ho;Kim, Young-Il;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.259-265
    • /
    • 2002
  • Piroxicam is one of the NSAID, which is used in the systemic and topical treatment of a variety of inflammatory conditions. Conventionally, for topical use, the drug is formulated in gel. We designed an phonophoretic drug delivery system to investigate the piroxicam permeability and the influence of ultrasound application (continuous mode, pulsed mode), frequency (1.0 MHz, 3.0 MHz) and intensity $(1.0\;w/cm^2,\;1.5\;w/cm^2,\;2.0\;w/cm^2)$ with 0.5% piroxicam gel. Per cutaneous absorption studies were performed in vitro models to determine the rate of drug absorption via the skin. Permeation study using hairless mouse skin was performed at $37^{\circ}C$ using buffered saline (pH 7.4, 10% propylene glycol solution) as the receptor solution. Anti-inflammatory activity was determined using carrageenan-induced foot edema model in rat. A pronounced effect of ultrasound on the skin absorption of the piroxicam was observed at all ultrasound energy level studied. Ultrasound was carried out for 10 hr. The highest permeation was observed at intensity of $2.0\;w/cm^2$, frequency of 1.0 MHz and continuous output. The inclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory activity in vivo.

Evaluation of the cytotoxicity of gold nanoparticle-quercetin complex and its potential as a drug delivery vesicle

  • Pak, Pyo June;Go, Eun Byeol;Hwang, Min Hee;Lee, Dong Gun;Cho, Mi Ju;Joo, Yong Hoon;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.145-147
    • /
    • 2016
  • Recently, conjugates of medicinal herb-derived bioflavonoids, such as quercetin, and gold nanoparticles (GNPs) have gained attention as targeted drug delivery systems. In the present study, because quercetin is an important flavonoid with anti-cancer, anti-inflammatory, and anti-oxidant properties, GNP-quercetin complexes (GNPQs) were synthesized to investigate possible adverse effects such as cytotoxicity. We found that while quercetin was cytotoxic, GNPQs were not cytotoxic towards the RAW 264.7 and THP-1 cell lines. Therefore, GNPQs may serve as a potential drug delivery system for cancer treatment.

Skin Permeability of piroxicam Gel by Phonophoretic Transdermal Drug Delivery (음파영동 경피약물수송에 의한 Piroxicam Gel의 경피투과)

  • Choi Suk-Joo;Oh Myung-Hwa;Kim Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.147-162
    • /
    • 2002
  • Transdermal permeation enhancer has been used to increased skin absorption. External control of drug release and skin absorption can also be achieved by iontophoresis or phonophoresis. However, because several problems with iontophoresis are that it has a risk to skin damage because of the change of pH and the increase of current density in applying it and that it can be applied only in the form of water solution, This study is to enhance drug permeation via skin following application of ultrasound. For this goal, in gel containing piroxicam, the degree of skin permeation in vitro and anti-inflammatory effect in in vivo were investigated. Permeation study using hairless mouse skin was performed at 37 $^{\circ}C$ using buffer saline as the receptor solution. The amount of piroxicam were quantified using a HPLC system consisting of solvent delivery system. Following adoption of ultrasound 1 MHZ, it showed relatively high permeation rate where it was compared with non treated by ultrasound. The influence of duty cycle having an effect on skin permeation rate was slight higher in the case of using pulsed mode. Skin permeation increase attended by intensity of ultrasound, the permeation of trice was accelerated at 2.0 W/$cm^{2}$ than 1.0 W/$cm^{2}$. The skin permeation of piroxicam was substantially influenced by ultrasound. Anti-inflammatory effects were determined using carrageenan-induced paw swelling method in SD rat. Paw swelling tests showed that pulsed phonophoresis group was more effective than control group and only gel application group. The conclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory effect in vivo.

  • PDF

Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines

  • Jisu Kim;Shuya Zhang ;Ying Zhu;Ruirui Wang;Jianxin Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.627-637
    • /
    • 2023
  • Background: Damage to the healthy intestinal epithelial layer and regulation of the intestinal immune system, closely interrelated, are considered pivotal parts of the curative treatment for inflammatory bowel disease (IBD). Plant-based diets and phytochemicals can support the immune microenvironment in the intestinal epithelial barrier for a balanced immune system by improving the intestinal microecological balance and may have therapeutic potential in colitis. However, there have been only a few reports on the therapeutic potential of plant-derived exosome-like nanoparticles (PENs) and the underlying mechanism in colitis. This study aimed to assess the therapeutic effect of PENs from Panax ginseng, ginseng-derived exosome-like nanoparticles (GENs), in a mouse model of IBD, with a focus on the intestinal immune microenvironment. Method: To evaluate the anti-inflammatory effect of GENs on acute colitis, we treated GENs in Caco2 and lipopolysaccharide (LPS) -induced RAW 264.7 macrophages and analyzed the gene expression of proinflammatory cytokines and anti-inflammatory cytokines such as TNF-α, IL-6, and IL-10 by real-time PCR (RT-PCR). Furthermore, we further examined bacterial DNA from feces and determined the alteration of gut microbiota composition in DSS-induced colitis mice after administration of GENs through 16S rRNA gene sequencing analysis. Result: GENs with low toxicity showed a long-lasting intestinal retention effect for 48 h, which could lead to effective suppression of pro-inflammatory cytokines such as TNF-α and IL-6 production through inhibition of NF-κB in DSS-induced colitis. As a result, it showed longer colon length and suppressed thickening of the colon wall in the mice treated with GENs. Due to the amelioration of the progression of DSS-induced colitis with GENs treatment, the prolonged survival rate was observed for 17 days compared to 9 days in the PBS-treated group. In the gut microbiota analysis, the ratio of Firmicutes/Bacteroidota was decreased, which means GENs have therapeutic effectiveness against IBD. Ingesting GENs would be expected to slow colitis progression, strengthen the gut microbiota, and maintain gut homeostasis by preventing bacterial dysbiosis. Conclusion: GENs have a therapeutic effect on colitis through modulation of the intestinal microbiota and immune microenvironment. GENs not only ameliorate the inflammation in the damaged intestine by downregulating pro-inflammatory cytokines but also help balance the microbiota on the intestinal barrier and thereby improve the digestive system.

Preparation and Evaluation of Ketoprofen-incorporated Solid Lipid Nanoparticles (SLN) (케토프로펜을 함유하는 고형 지질 나노파티클의 제조 및 평가)

  • Baek, Myoung-Ki;Lee, Sang-Young;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.245-256
    • /
    • 1996
  • Solid lipid nanoparticles (SLN) have been developed as a new drug delivery system. Although many particulate drug carriers, such as microsphere, liposome, niosome, emulsion, etc. have been introduced, they have some disadvantage; low efficiency of incorporation and stability, lack of reproducibility, and so on. Meanwhile, SLN as a new drug delivery system is known to entrap rugs with a high efficiency and a good reproducibility. Moreover, small size SLN can circulate in blood for a prolonged time. Although many preparation methods were introduced, microfluidization method is recommended to be the most useful. This study was attempted to prepare and evaluate ketoprofen-incorporated SLNs (keto-SLN), which were prepared by two methods, ultrasonication and microfluidization. Keto-SLN was evaluated by measurement of particle size and zeta potential, efficacy of entrapment, sedimentation volume, in virto release pattern. The mean particle size was about $0.1\;{\mu}m$, and the size was dependent on the type and the amount of emulsifier. Zeta potential was negative, $-9{\sim}-13mV$ and entrapment efficacy was very high and stability was good for at least 60 days in the respect of particle size and sedimentation volume ratio. Analgesic effect was also determined as well as pharmacokinetic parameters. The former was comparable to that of that of ketoprofen loaded suspension (keto-sus) and the latter revealed that consistent with the delayed release of keto-SLN. $T_{max}$ was longer than keto-sus. Therefore, keto-SLN was favourable dosage forms in the field of drug delivery system such as anti-cancer, analgesics and anti-inflammatory agents.

  • PDF

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

Preparation and Evaluation of Adhesive Hydrogel of Ketoprofen Using Microsphere System (마이크로스피어 시스템을 이용한 케토프로펜 점착성 하이드로겔의 제조 및 평가)

  • Cho, Young-Ho;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.297-302
    • /
    • 2010
  • Ketoprofen is one of the propionic acid class of nonsteroidal anti-inflammatory drug with analgesic and antipyretic effects. The most common side effects from ketoprofen after oral administration are gastrointestinal irritation, diarrhea, abdominal pain and retention of fluid. Ketoprofen was formulated as water-soluble gels to reduce these side effects. To increase the skin permeability of ketoprofen, microsphere containing ketoprofen was prepared with chitosan and ploy-$\varepsilon$-caprolactone. And then prepared microsphere was manufactured as an adhesive hydrogel with polyvinylpyrrolidone K-25, polyethylene glycol 4000, and various permeation enhancers. The flux and permeability of ketoprofen were evaluated. As the concentration of tween 80 and enhancers increased, the flux of ketroprofen was accelerated. Also the permeation rate was facilitated by enhancers, but did not affect the lag time. From these results, the adhesive hydrogel using microsphere could be a good delivery system for ketoprofen to improve the skin permeation.

Effects of aqueous extracts from Lonicera japonica and Tussilago farfara on RAW 264.7 Macrophages

  • Lee, Eung-Seok;Yang, Su-Young;Park, Yang-Chun;Oh, Young-Seon;Lee, Jin-Woo;Lee, Yong-Koo
    • Journal of Haehwa Medicine
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • Inhalational drug is an attractive modality for local therapy of pulmonary diseases as well as systemic drug delivery. Flower of Lonicera japonica (FLJ) and flower of Tussilag farfara (FTF) are medicinal herbs for respiratory disease in traditional Korean medicine. As a preliminary study for effective inhalable formulation of FLJ and FTF, this study was to provide the toxicity and anti-inflammatory effect on murine macrophages. The dried FLJ and FTF were extracted with distilled water, filtered and freeze-dried. After treatment with FLJ and FTF extract on RAW 264.7 cells, the cell viabilities were measured by MTT assay. FLJ and FTF did not show cytotoxicity on RAW 264.7 cells. LPS stimulated RAW 264.7 cells were treated with 3 and $30\;{\mu}g/ml$ of FLJ or FTF. FLJ and FTF did not inhibit TNF-a and IL-6 secretion in both concentration of treatment. We suggest that FLJ and FTF may be useful drugs for respiratory disease. Future work will focus on the physical characteristics for inhalable formulation.