• Title/Summary/Keyword: Anti-inflammatory and antioxidative effects

Search Result 161, Processing Time 0.024 seconds

Study on the Anti-oxidative Activity and Anti-inflammatory Effects of Processed Sulfur with Cordyceps Militaris Mycelium (동충하초 균사체를 이용한 법제 유황의 항산화활성 및 항염증 효과)

  • Cho, Hwa-Eun;Kim, Hae-Ja;Choi, Yun-Hee;Lee, Ki-Nam;Chong, Myong-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.360-367
    • /
    • 2009
  • The purpose of this study was evaluated physiological activity of processed sulfur with Cordyceps militaris mycelium that antioxidative and antiinflammatory effects. Proliferation of processed sulfur (PS) with Cordyceps militaris mycelium was increased in dose-dependent manner. In organic sulfur contents of Cordyceps militalis mycelium fortified processed sulfur, CM+PSH (CM+3000 ppm of PS) was significantly higher than other groups. However, CM+PSL (CM+1500 ppm of PS) was almost changed organic sulfur. Content of total polyphenol compounds was similarity to CM, CM+PSL and CM+PSH. The EDA (electron donating ability) and SOD-like activity was increased in dose-dependent manner and the activity of CM were significantly higher than CM+PSL and CM+PSH. We examined cytotoxicity, nitric oxide production of Raw 264.7 cell and inhibition of HT 1080 cell by MTT assay. CM, CM+PSL and CM+PSH do not have any toxic effects in macrophages (Raw 264.7). And CM+PSL and CM+PSH inhibited the production of nitrite in Raw 264.7 cells activated with LPS. The antitumor effects of processed sulfur with Cordyceps militaris mycelium on HT 1080 cell was indicated a significantly inhibition activity. These results suggested that processed sulfur with Cordyceps militaris mycelium have activities of antioxidant, antiinflammatory effects.

Antioxidant and anti-inflammatory effects and mechanism of Abeliophyllum distichum leaf extract in RAW264.7 macrophages (RAW264.7 대식세포에서 미선나무 잎 추출물의 항산화, 항염증 효능 및 기전연구)

  • Juhee Yoo;Kyung-Ah Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.455-468
    • /
    • 2023
  • Purpose: Abeliophyllum distichum (A.distichum) is a plant native to Korea. In this study, we investigated the mechanism of antioxidant and anti-inflammatory effects of the leaf extract of A.distichum. Methods: The antioxidant capacity of the A.distichum leaf extract was determined based on the total polyphenol content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and the ferric reducing antioxidant power (FRAP) assay. The anti-inflammatory effects of the A.distichum leaf extract were evaluated by measuring the production of nitric oxide (NO) and the expression levels of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 using the enzyme-linked immunosorbent assay (ELISA) and reverse transcription quantitative real-time PCR (RT-qPCR). In addition, the expression of heme oxygenase-1 (HO-1), nuclear transcription factor-erythroid 2 related factor (Nrf2), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2), as well as the activation of nuclear factorkappa B (NF-ĸB) were examined using the western blot analysis. Results: The total polyphenol content of the A.distichum leaf extract was 329.89 ± 30.17 gallic acid equivalents mg/g and the DPPH and ABTS scavenging activities were 55% and 70%, respectively. Additionally, the FRAP value of the extract was 743.68 ± 116.59 mg/mL. After 12-hour treatment with the A.distichum leaf extract, there was a tendency for the Nrf2 expression to increase, and the expression of HO-1 was significantly elevated in the RAW264.7 cells. The A.distichum leaf extract treatment resulted in decreased levels of NO, TNF-α, IL-6, and IL-1β, as well as reduced expression of iNOS and COX-2, along with inhibition of NF-κB activation in lipopolysaccharide-stimulated RAW264.7 cells. Conclusion: These results suggest that the A.distichum leaf extract exerts antioxidative and anti-inflammatory effects by upregulating the expression of HO-1 and downregulating NF-κB activation.

Antioxidative and Anti-inflammatory Effects of Petasites japonicus (머위추출물의 항산화와 항염증 효과)

  • Kim, Jin-Hwa;Na, Young;Sim, Gwan-Sub;Lee, Bum-Chun;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.263-267
    • /
    • 2006
  • Antioxidative and anti-inflammatory activities of Petasites japonicus extract were evaluated. P. japonicus extract showed 70.1% inhibition on peroxidation of linoleic acid. In the experiment using the cell permeable dye, 2',7'- dichlorofluorescein diacetate (DCFDA) as an indicator of reactive oxygen species (ROS) generation, intracellular oxidative stress in UVB-irradiated keratinocytes was shown to be decreased by P. japonicus extract. Also, UVB-induced production of interleukin-$1{\alpha}$ and prostaglandin $E_2$ in human HaCaT keratinocytes was reduced in a dose-dependent manner by treatment with P. japonicus extract. All these results suggest that P. japonicus extract can be effectively used for prevention of UV-induced adverse skin reactions such as radical production and inflammation.

SUPPRESSION OF PHORBOL ESTER-INDUCED EXPRESSION OF CYCLLOOXYGENASE-2 AND INDUCIBLE NITRIC OXIDE SYNTHASE BY SELCTED CHEMOPREVENTIVE PHYTOCHEMICALS VIA DOWN-REGULATION OF NF-$\textsc{k}$B

  • Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05b
    • /
    • pp.88.2-98
    • /
    • 2002
  • A wide arry of naturally occurring substances particularly those present in dietary and medicinal plants, have been reported to possess substantial cancer chemopreventive properties. Certain phytochemicals retain strong antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activities. Inducible cyclooxygenase(COX-2) and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. There is some evidence that expression of both COX-2 and iNOS is co-regulated by the eukaryotic transcription factor NF-$textsc{k}$B. Increased expression of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory diseases. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activies are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. An example is curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), that strongly occurring diaryl heptanoids structurally related to curcumin have substantial anti-tumor promotional activities in two-stage mouse skin carcinogenesis. Thus, yakuchinone A [1-(4'-hydroxy-3'-methoxyphenyl)-7-phenyl-3heptanone] and yakuchinone B [1-(4'-hydroxy-3'methoxyphenyl)-7-phenylhept-1-en-3-one] present in Alpinia oxyphylla Miquel (Zingiberacease) attenuate phorbol ester-induced inflammation and papilloma formation in female ICR mice. These diarylheptanoids also suppressed phorbol ester-induced activation of epdermal ornithine decarboxylase and its mRNA expression when applied onto shaven backs of mice. Yakuchinone A and B as well as curcumin inhibited phorbol ester-induced expression of COX-2 and iNOS and their mRNA in mouse skin via inactivation of NF-$textsc{k}$B. Capsaicin, a major pungent ingredient of red pepper also attenuated phorbol ester-induced NF-$textsc{k}$B activation. Similar suppression of COX-2 and iNOS and down-regulation of NF-$textsc{k}$B activation for its DNA binding were observed with the ginsenosied Rg3 and the ethanol extract of Artemisia asiatica. We have also found that certain anti-inflammatory phytochemicals exert inhibitory effects on phorbol ester-induced COX-2 expression and NF-$textsc{k}$B activation in immortalized human breast epithelial (MCF-10A) cells in culture. One of the plausible mechanisms undelying inhibition by aforementioned phytochemicals of phorbol ester-induced NF-$textsc{k}$B activation involves interference with degragation of the inhibitory unit, I$textsc{k}$Ba, which blocks subsequent nuclear translocation of the functionally active p65 subunit of NF-$textsc{k}$B. the activation of epidermal NF-$textsc{k}$B by phorbol ester and subsequent induction of COX-2 hence appear to play an important role in intracellular signaling pathwasy leading to tumor promotion and targeted inhibition of NF-$textsc{k}$B may provide a new promising cancer chemopreventive strategy.

  • PDF

Screening of Antioxidative, Anti-thrombotic and Anti-atherosclerotic Effects of Moutan Root Bark Extracts (Moutan Root Bark가 항산화활성과 LDL 산화 억제 및 항철소판 응접에 미치는 영향)

  • Ban, Chang-Kye;Lee, Min-Ja;Lee, Hye-Sook;Jung, Hyun-Jung;Kim, Hyuck;Kim, Jai-Eun;Park, Sun-Dong;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.135-143
    • /
    • 2009
  • There is currently increased interest in the identification of antioxidant compounds that are pharmacologically potent and have low or no side effects. Plants produce significant amounts of antioxidants to prevent the oxidative stress caused by photons and oxygen, therefore they represent a potential source of new compounds with antioxidant activity. Moutan Root Sark (MRS) has been frequently used as analgesic. antispasmodic, anti-inflammatory and remedies for female diseases. In this study. the antioxidant activity of extract from MRS was studied in vitro methods by measuring the antioxidant activity by TEAC, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$ induced human LDL oxidation and the inhibitory effect on collagen induced platelet aggregation. The MRS extracts were found to have a potent scavenging activity, as well as an inhibitory effect on LDL oxidation and on platelet aggregation. In conclusion, the MRS extracts have anti-oxidative and anti-atherosclerotic effects in vitro system, which can be used for developing pharmaceutical drug against oxidative stress and atherosclerosis.

Phenolic Compounds from Barks of Actinidia arguta Planchon Growing in Korea and its Anti-Oxidative and Nitric Oxide Production Inhibitory Activities (국내산 다래나무 수피의 페놀성 화합물의 항산화 및 Nitric Oxide 생성 억제 활성)

  • Lim, Hyun-Woo;Shim, Jae-Geul;Choi, Hyung-Kyoon;Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.3 s.142
    • /
    • pp.245-251
    • /
    • 2005
  • Phytochemical examination of the barks of Actinidia arguta led to the isolation of five flavonoids. Structures of compounds were elucidated as catechin (1), (-)-epicatechin (2), quercetin (3), $quercetin-3-O-{\beta}-D-glucopyranoside$ (4), $quercetin-3-O-{\beta}-D-galactopyranoside$ (5) by comparison with previously reported spectral evidences. To investigate the anti-oxidative effect and nitric oxide (NO) production inhibitory activity of these compounds, DPPH radical scavenging activity and nitric oxide production inhibitory activity in $IFN-{\gamma}$, LPS stimulated RAW 264.7 cell were examined. The $IC_{50}s$ were determinied as follows : $1\;$IC_{50}=26.61\;{\mu}g/ml$, $2\;IC_{50}=25.30\;{\mu}g/ml$, $3\;IC_{50}=20.41\;{\mu}g/ml$, $4\;IC_{50}=18.23\;{\mu}g/ml$ , $5\;IC_{50}=30.46\;{\mu}g/ml$, $6\;IC_{50}=28.0;{\mu}g/ml$, $7\;IC_{50}=27.24\;{\mu}/ml$. These NO production inhibitory effects were significantly different compared with the positive control, L-NMMA $(IC_{50}=20.77\;{\mu}g/ml)$, respectively. Compound $1\;(IC_{50}=6.19\;{\mu}g/ml)$, $2\;(IC_{50}=8.98\;{\mu}g/ml)$, $3\;(IC_{50}=7.30\;{\mu}g/ml)$ and $4\;(IC_{50}=7.64\;{\mu}g/ml)$ also showed potent antioxidative activities similar level to ascorbic acid $(IC_{50}=9.22\;{\mu}g/ml)$. These results suggest that barks of A. arguta have a potent anti-oxidative and anti-inflammatory activity.

Anti-Atherosclerosis Activity of Rosmarinic Acid in Human Aortic Smooth Muscle Cells (사람 동맥 평활근 세포에 대한 Rosmarinic Acid의 항동맥경화 활성)

  • Ha, Jung-Jae;Yun, Hyun-Jeong;Huh, Joon-Young;Kim, Jai-Eun;Park, Sun-Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1423-1430
    • /
    • 2009
  • Rosmarinic acid frequently found as a secondary metabolite in herbs and medicinal plants, has exhibited antimicrobial, antiviral, antioxidative, and anti-inflammatory activities. The proliferation and migration of human aortic smooth muscle cells (HASMC) in response to activation by various stimuli plays a critical role in the initiation and development of atherosclerosis. This study was conducted to examine the effects of Rosmarinic acid on the proliferation and migration of HASMC. Rosmarinic acid suppressed the proliferation of HASMC via induction of the expression of apoptotic proteins including cleaved poly ADP-ribose polymerase (PARP), and caspase-3. Rosmarinic acid decreased anti-apoptotic Bcl-2 and increased pro-apoptotic Bax. Moreover, treatment of rosmarinic acid decreased the G1/S cycle regulation proteins (cyclin D1, cyclin E, CDK2, CDK4 and CDK6) and increased p21, p27 and p53. Rosmarinic acid also blocked HASMC migration via suppression of MMP-9 and MMP-2. Taken together, these results indicate that rosmarinic acid has the potential for use as an anti-atherosclerosis agent.

Anti-inflammatory and Anti-oxidative Effects of Korean Red Ginseng Extract in Human Keratinocytes

  • Hong, Chang-Eui;Lyu, Su-Yun
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • Background: In this study, we have investigated the effect of Korean red ginseng (KRG) extracts on the production of TNF-${\alpha}$ and IL-8 in human keratinocytes. Also, to examine the antioxidative effect of red ginseng extracts, free radical scavenging activity and superoxide dismutase (SOD) activity in human dermal fibroblasts was measured. Methods: To investigate the effect of KRG in atopic dermatitis, we measured the level of TNF-${\alpha}$ and IL-8 secretion in LPS-stimulated human keratinocytes after the treatment of KRG extracts using enzyme-linked immunosorbent assay. Anti-oxidative activity was investigated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and SOD activity. Results: The stimulation of human keratinocytes with KRG extracts shifted the LPS-induced cytokine secretion toward a more immunosuppressive response. KRG dose-dependently decreased TNF-${\alpha}$ and IL-8 production in HaCaT cells and a significant inhibition of TNF-${\alpha}$ was shown when cells were treated with 500 and $1,000{\mu}g/ml$ of KRG extracts. Additionally, KRG extracts showed DPPH radical scavenging and SOD activity in a dose-dependent manner. Particularly, SOD activities of concentrations higher than $60{\mu}g/ml$ of KRG extracts were significantly different in human dermal fibroblast cells. Conclusion: Based on this study, KRG extracts may be a useful immunosuppressive agent in the treatment of atopic dermatitis.

The Effects of Lycium Chinense Milie on the $H_{2}O_{2}$-treated $LLC-PK_1$ Cell's Redox Status and $NF-{\kappa}B$Signaling (지골피(地骨皮)가 $H_{2}O_{2}$에 의한 $LLC-PK_1$ 세포의 Redox Status 및 $NF-{\kappa}B$ Signaling에 미치는 영향)

  • Choi, Gyu-Ho;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.36-50
    • /
    • 2009
  • Objectives : This study was aimed to verify the cytoprotective function, antioxidative effect and inflammation genes inhibitory effects of Lycium chinense Milie. Therefore the generation of superoxide anion radical ( $O_2\;^-$), peroxynitrite ($ONOO^-$), nitric oxide (NO) and prostaglandin $E_2$ $(PGE_2)$ was investigated in the renal epithelial cells of mouse. Effects of Lycium chinense Milie on the expression of inflammation-related proteins, $IKK-{\alpha}$. $p-IKK-\alpha\beta$, $p-I{\kappa}B-\alpha$, $NF-{\kappa}B$ (p50, p65), COX-2 and iNOS, were examined by western blotting. Methods : For this study, the fluorescent probes were used, namely dihydrorhodamine 123 (DHR 123), 4.5-diaminofluorescein (DAF-2) and 2',7'-dichlorodihydrofluorescein diacetate (DCFDA). Western blotting was performed using anti-$IKK-\alpha$, anti-phospho $IKK-\alpha\beta$, anti-phospho $I{\kappa}B-\alpha$, anti-$NF-{\kappa}B$ (p50, p65), anti-COX-2 and anti-iNOS, respectively. Results : Lyciutn chinense Milie reduced $H_{2}O_{2}$-induced cell death dose-dependently. It inhibited the generation of $O_2\;^-$, $ONOO^-$, NO and $PGE_2$ in the $H_{2}O_{2}$-treated renal epithelial cells of mouse in vitro. Lycium chinense Milie inhibited the expression of $IKK-\alpha$, $p-IKK-\alpha\beta,\;p-I{\kappa}B-\alpha$, COX-2 and iNOS genes by means of decreasing activation of $NF-{\kappa}B$. Conclusions : According to above results. Lycium chinense Milie recommended to be applied in treatment for the inflammatory process and inflammation-related diseases.

  • PDF

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.