• 제목/요약/키워드: Anti-corrosion treatment

검색결과 70건 처리시간 0.035초

Anti-Corrosion Performance and Applications of PosMAC® Steel

  • Sohn, Il-Ryoung;Kim, Tae-Chul;Ju, Gwang-Il;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.7-14
    • /
    • 2021
  • PosMAC® is a brand of Zn-Mg-Al hot-dip coated steel sheet developed by POSCO. PosMAC® can form dense surface oxides in corrosive environments, providing advanced corrosion resistance compared to traditional Zn coatings such as GI and GA. PosMAC® 3.0 is available for construction and solar energy systems in severe outdoor environments. PosMAC®1.5 has better surface quality. It is suitable for automotive and home appliances. Compared to GI and GA, PosMAC® shows significantly less weight reduction due to corrosion, even with a lower coating thickness. Thin coating of PosMAC® provides advanced quality and productivity in arc welding applications due to its less generation of Zn fume and spatters. In repeated friction tests, PosMAC® showed lower surface friction coefficient than conventional coatings such as GA, GI, and lubricant film coated GA. Industrial demand for PosMAC® steel is expected to increase in the near future due to benefits of anti-corrosion and robust application performance of PosMAC® steel.

적층제조된 스테인레스 316L에 대한 초음파나노표면개질에 따른 표면특성 및 부식성에 관한 연구 (Surface Quality and Corrosion of Additively Manufactured STS316L Treated by Ultrasonic Nanocrystal Surface Modification)

  • 김준호;오영택;박한별;이동호;김화정;김의준;심도식
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.94-103
    • /
    • 2020
  • This study investigated the effects of ultrasonic nanocrystal surface modification (UNSM) on the deteriorated surface of AISI SUS316L additively manufactured (AM) using the powder bed fusion (PBF) technique. Specifically, the effects of UNSM conditions on surface topology, hardness, and anti-corrosion were examined. Before UNSM treatment, the stainless steel 316L powder was processed via the PBF machine to prepare a substrate. We observed surface changes due to UNSM treatments in PBF SUS316L substrates and examined the correlation between topology changes, roughness, hardness, and anti-corrosion. After UNSM treatment, the coarse as-built surface was refined, and a regular micro-profile was implemented. Compared to the non-treated PBF sample, the waviness and roughness of the surfaces after UNSM treatment decreased by up to 56.0% and 94.5%, respectively, and decreased further as the interval decreased. The hardness improved by up to 63.0% at a maximum depth of 500 ㎛ from top surface by the UNSM treatment. The results of the corrosion test showed that the corrosion resistance of the UNSM specimens was moderately improved compared to that of the untreated surface. This study confirmed that UNSM is an effective post-processing technique for additively manufactured parts.

이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조 (Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method)

  • 김동현;이동훈
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.123-128
    • /
    • 2018
  • The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.

플라즈마 식각후 처리에 의한 Al alloy막의 부식 억제 효과 (Effects of anti-corrosion of the Al alloy film by the post-etch treatment)

  • 김환준;이철인;최현식;권광호;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.413-417
    • /
    • 1997
  • In this study, chlorine(Cl)-based gas chemistry is generally used to etching for AlCu films metallization. The corrosion phenomena of AlCu films were examined with XPS (X-ray photoelectron spectroscopy), SEM (Scanning electron microscopy), and TEM (Transmission electron microscopy). SF$\sub$6/ plasma treatment subsequent to the etch process prevents the corrosion effectively in the pressure of 300 mTorr. It is found that the chlorine atoms on the etched surface are not substituted for fluorine atoms during SF$\sub$6/ treatment, but a passivation layer on the surface by fluorine-related compounds would be formed. The passivation layer prevents the moisture penetration on the SF$\sub$6/ treated surface and suppresses the corrosion successfully.

  • PDF

용사처리에 의한 자동차 브레이크용 마찰재료의 마찰성능개선에 관한 연구 (A study on the improvement of frictional performance of friction material for automobile brake by spray treatment)

  • 김윤해;배창원;손태관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.67-76
    • /
    • 1998
  • Friction materials for brake linings and clutches have severe performance requirements. The principal function of such frictional elements is to convert kinetic energy to heat, and then either to absorb or to dissipate heat. In order to achieve these objectives, the coefficient of friction must be as high as possible, independent of variations in operating conditions, and the necessary energy conversion must be accomplished with a minimum of wear on the contacting parts. In this study, Al powder, Al bronze powder and Mo powder used in general for automobile brake was sprayed on automobile brake disc to restrain rust and to maintain friction performance. Dynamo and corrosion tests have been carried out. It is concluded that the sprayed disc with Al bronze powder has the most improved frictional performance and anti-corrosive characteristics. The main results obtained can be summarized as follows; 1. From the corrosion current density test for gray cast iron and sprayed disc with powders of Al, Al bronze and Mo, it was cleared that the spray treatment with Al bronze powder showed the most superior anti-corrosive characteristics than other powders. 2. By anode polarization toward the noble direction from corrosion potential, corrosion current density with sprayed brake disc by Al-bronze powder was the lowest. 3. Mean frictional coefficients obtained from dynamo test are as follows : the sprayed disc with Al(99.99%) powder was 0.190 ; the sprayed disc with Al-bronze powder was 0.312 ; the sprayed disc with Mo powder was 0.257 ; the non-sprayed disc of gray cast iron was 0.331. In the case of the sprayed disc Al-bronze powder showed the most excellent frictional characteristics . 4. Amount of burnish quantity obtained from burnish test by dynamometer is as follows : the sprayed disc with Al-powder was 1.079 mm : the sprayed disc with Al-bronze powder was 0.155 mm : the sprayed disc with Mo powder was 0.253 mm : the non-sprayed disc of gray cast iron was 0.241 mm. Al-bronze powder also showed the most excellent burnish characteristics.

  • PDF

열처리조건에 의한 자동차용 EGR쿨러의 브레이징부 접합강도에 관한 연구 (A Study on the Strength of Brazed Joint for Automotive EGR Cooler by Heat Treatment Conditions)

  • 이준;한창석
    • 열처리공학회지
    • /
    • 제22권4호
    • /
    • pp.210-216
    • /
    • 2009
  • Stainless steel EGR cooler of diesel engine is widely used to prevent the corrosion due to the content of sulfur in diesel fuel. The strength of brazed joint between stainless steel materials is very important. It is essential to observe the spreading ratio of the filler metals under the condition of deoxidation or vacuum during heating process. In this experiment, spreading ratio was tested to find the optimum brazing condition for stainless steel using brazing filler metals of FP-613, BNi-2 and BNi-5 on sus304 and sus410. Anti-corrosion tests were also performed on the above filler metals with solution of 5% $H_2SO_4$, 65% $HNO_3$ and 5% $NH_4OH$. Consequently FP-613 has good ability for anti-corrosion with 30% of chromium content compared with other filler metals. The optimum brazing conditions are occurred at $960^{\circ}C$ for 90 min. and at $1090^{\circ}C$ for 50 min. at the same degree of vacuum, $2{\sim}3{\times}10^{-3}$ Torr.

쇼트피닝 가공을 통한 스프링강의 부식거동에 관한 연구 (A Study on Corrosive Behavior of Spring Steel by Shot-Peening Process)

  • 안재필;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.325-330
    • /
    • 2004
  • Recently, the request for the high strength of material is more and more increased in the area of industrial environment and machinery. To accomplish the high strength of materials, carbonizing treatment, nitrifying treatment, shot-peening method are representatively applied, however, shot-peening method is generally used among the surface processes. Shot peening is a cold working process used to impact Compressive residual stressed in the exposed surface layers. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test as performed on the two kinds of specimens. Corrsion potential, polarization curve, residual stress and etc, were investigated from experiment results. From test result the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened on the environment corrosion of spring steels are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent mental. Surface of specimen, which is treated with the shot peened is placed as more activated state against inner base metal. It can cause t도 anti-corrosion effect on the base metal.

  • PDF

Application of ozone treatment in cooling water systems for energy and chemical conservation

  • Ataei, Abtin;Mirsaeed, Morteza Ghazi;Choi, Jun-Ki;Lashkarboluki, Reza
    • Advances in environmental research
    • /
    • 제4권3호
    • /
    • pp.155-172
    • /
    • 2015
  • In this study, a complete set of recirculating cooling water system and the required instruments were built in a semi-industrial-scale and a 50 g/h ozone generation plant and a chlorine system were designed for cooling water treatment. Both chlorination and ozonation treatment methods were studied and the results were analyzed during two 45-days periods. The concentrations of ozone and chlorine in recirculating water were constant at 0.1 mg/lit and 0.6 mg/lit, respectively. In ozone treatment, by increasing the concentration cycle to 33%, the total water consumption decreased by 26% while 11.5% higher energy efficiency achieved thanks to a better elimination of bio-films. In case of Carbon Steel, the corrosion rate reached to 0.012 mm/yr and 0.025 mm/yr for the ozonation and chlorination processes, respectively. Furthermore, consumptions of the anti-corrosion and anti-sedimentation materials in the ozone cooling water treatment were reduced about 60% without using any oxidant and non-oxidant biocides. No significant changes in sediment load were seen in ozonation compared to chlorination. The Chemical Oxygen Demand of the blow-down in ozonation method decreased to one-sixth of that in the chlorination method. Moreover, the soluble iron and water turbidity in the ozonation method were reduced by 97.5% and 70%, respectively. Although no anaerobic bacteria were seen in the cooling water at the proper concentration range of ozone and chlorine, the aerobic bacteria in chlorine and ozone treatment methods were 900 and 200 CFU/ml, respectively. The results showed that the payback time for the ozone treatment is about 2.6 years.

R-134a 터보냉동기 응축기의 무세정 수처리 약품 효과 연구 (A Study on the Effect of Non-Clean Water Treatment Chemicals for R-134a Turbo-Chiller Condensers)

  • 정다운;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.437-445
    • /
    • 2022
  • This paper presents an experimental study on the main management factors of the condenser contamination such as fouling and corrosion for the R-134a turbo-chiller to save energy, reduce corrosion rates, and reduce maintenance costs through the application of condenser non-cleaning water treatment chemical. The series of experiment is conducted using combining oxidative microbial sterilizers, non-oxidizing microbial sterilizers, and anti-corrosion agents. The leaving temperature difference and corrosion rates for three different combination of chemicals are collected and analyzed. The experimental results show that the cost reduction (4,066,000 Won/year) of the disinfectant (FT-830) can be achieved by adding the oxidative disinfectant (NaOCl) and the non-oxidizing disinfectant (NX-1116). The LTD value is maintained at 1.9℃, and the corrosion rates of copper and carbon steel specimens are 0.07 mpy and 1.61 mpy, respectively.