• Title/Summary/Keyword: Anti-cancer therapy

Search Result 441, Processing Time 0.028 seconds

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.

Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles (업컨버전 나노입자를 이용한 광역학치료 연구 동향)

  • Im, Se Jin;Lee, Song Yeul;Park, Yong Il
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.138-146
    • /
    • 2018
  • Photodynamic therapy (PDT) is a great potential approach for the localized tumor removal with fewer metastatic potentials and side effects in treating the disease. In the treatment process, a photosensitizer (PS) that absorbs a light energy to generate reactive oxygen is essential. In general, a visible light is used as a light source of PDT, so that side effects from the light source are inevitable. For this reason, upconversion nanoparticles (UCNPs) using near-infrared (NIR) as an excitation source are attracting attention in the field of disease diagnosis and treatment. UCNPs have the low cytotoxicity and phototoxicity, and also advantages such as deep tissue penetration and low background autofluorescence. For PDT, UCNPs should be combined with a PS which absorbs the light energy from UCNPs and transfers it to the surrounding oxygen to produce reactive oxygen. In addition, the therapeutic efficacy can be improved by modifying nanoparticle surfaces, adding anti-cancer drugs, or combining with photothermal therapy (PTT). In this review, we summarize the recent research to improve the efficiency of PDT using UCNPs.

Gefitinib in Selected Patients with Pre-Treated Non-Small-Cell Lung Cancer: Results from a Phase IV, Multicenter, Non-Randomized Study (SELINE)

  • Lee, Kwan-Ho;Lee, Kye-Young;Jeon, Young-June;Jung, Maan-Hong;Son, Choonhee;Lee, Min-Ki;Ryu, Jeong-Seon;Yang, Sei-Hoon;Lee, Jae-Cheol;Kim, Young-Chul;Kim, Sun-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.6
    • /
    • pp.303-311
    • /
    • 2012
  • Background: This study was designed to analyze the efficacy of gefitinib as a second-line therapy, according to the clinical characteristics in Korean patients with non-small-cell lung cancer (NSCLC). Methods: In this Phase IV observational study, we recruited patients, previously failed first-line chemotherapy, who had locally advanced or metastatic NSCLC, and who were found to be either epidermal growth factor receptor (EGFR) mutation-positive or satisfied 2 or more of the 3 characteristics: adenocarcinoma, female, and non-smoker. These patients were administered with gefitinib 250 mg/day, orally. The primary endpoints were to evaluate the objective response rate (ORR) and to determine the relationship of ORRs, depending on each patient's characteristics of modified intent-to-treat population. Results: A total of 138 patients participated in this study. One subject achieved complete response, and 42 subjects achieved partial response (ORR, 31.2%). The subgroup analysis demonstrated that the ORR was significantly higher in patients with EGFR mutation-positive, compared to that of EGFR mutation-negative (45.8% vs. 14.0%, p=0.0004). In a secondary efficacy variable, the median progression-free survival (PFS) was 5.7 months (95% confidence interval, 3.9~8.4 months) and the 6-month PFS and overall survival were 49.6% and 87.9%, respectively. The most common reported adverse events were rash (34.4%), diarrhea (26.6%), pruritus (17.5%), and cough (15.6%). Conclusion: Gefitinib was observed in anti-tumor activity with favorable tolerability profile as a second-line therapy in these selected patients. When looking at EGFR mutation status, EGFR mutation-positive showed strong association with gefitinib by greater response and prolonged PFS, compared with that of EGFR mutation-negative.

Synthesis of I-125 Labelled Compound of Taxol Analogue for Radioimmunoassay (Taxol의 방사면역측정을 위한 I-125 표지화합물 합성)

  • 오옥두;금준섭;이양호;박용석;편웅범;최창운
    • Biomedical Science Letters
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 1997
  • Taxol, an anticancer drug that has diterpenoid conformation, has been used as an effective chemotherapeutical agent in the treatment of breast and ovarian cancers. Because of its toxicity like other anticancer drugs, monitoring the taxol level in serum is important procedure during cancer therapy. The various monitoring methods using HPLC, ELISA, and RIA have been adopted, and RIA technique is known to be superior than other methods in trems of sensitivity and convenience. In this study, in order to develope taxol RIA system using $^{125}$I labelled antigen, first of all we synthesized taxol derivatives. 2'-hemisuccinyltaxol was obtained with about 80% yield by esterification of taxol at C-2' hydroxyl group on C-13 carbon with succinic anhydride. [$^{125}$I]iodotyramine was prepared with 58% labelling yield by radioiodination of tyramine and purified by gel chromatography. 2'-[$^{125}$I]iodotyramine-hemisuninyltaxol, $^{125}$I labelled antigen for taxol RIA, was synthesized with 96% yield from conjugation of 2'-hemisuccinyltaxol and [$^{125}$I]iodotyramine. Anti-taxol serum was produced from the rabbit immunized with 2'-hemisuccinyltaxol-BSA synthesized by 2'-hemisuccinyltaxol and BSA. The antiserum titer was determined by RIA using 2'-[$^{125}$I]iodotyramine-hemisuccinyltaxol. The titer of 1:20 was obtained with about 40% of B/T. The results suggest that taxol RIA using $^{125}$I labelled antigen can be applied to monitor the taxol level in serum.

  • PDF

Inhibition of c-FLIP by RNAi Enhances Sensitivity of the Human Osteogenic Sarcoma Cell Line U2OS to TRAILInduced Apoptosis

  • Zhang, Ya-Ping;Kong, Qing-Hong;Huang, Ying;Wang, Guan-Lin;Chang, Kwen-Jen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2251-2256
    • /
    • 2015
  • To study effects of cellular FLICE (FADD-like IL-$1{\beta}$-converting enzyme)-inhibitory protein (c-FLIP) inhibition by RNA interference (RNAi) on sensitivity of U2OS cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, plasmid pSUPER-c-FLIP-siRNA was constructed and then transfected into U2OS cells. A stable transfection cell clone U2OS/pSUPER-c-FLIP-siRNA was screened from the c-FLIP-siRNA transfected cells. RT-PCR and Western blotting were applied to measure the expression of c-FLIP at the levels of mRNA and protein. The results indicated that the expression of c-FLIP was significantly suppressed by the c-FLIP-siRNA in the cloned U2OS/pSUPER-c-FLIP-siRNA as compared with the control cells of U2OS/pSUPER. The cloned cell line of U2OS/pSUPER-c-FLIP-siRNA was further examined for TRAILinduced cell death and apoptosis in the presence of a pan-antagonist of inhibitor of apoptosis proteins (IAPs) AT406, with or without 4 hrs pretreatment with rocaglamide, an inhibitor of c-FLIP biosynthesis, for 24 hrs. Cell death effects and apoptosis were measured by the methods of MTT assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry, respectively. The results indicated that TRAIL-induced cell death in U2OS/pSUPER-c-FLIP-siRNA was increased compared with control cells U2OS/pSUPER in the presence or absence of AT406. Flow cytometry indicated that TRAIL-induced cell death effects proceeded through cell apoptosis pathway. However, in the presence of rocaglamide, cell death or apoptotic effects of TRAIL were similar and profound in both cell lines, suggesting that the mechanism of action for both c-FLIP-siRNA and rocaglamide was identical. We conclude that the inhibition of c-FLIP by either c-FLIP-siRNA or rocaglamide can enhance the sensitivity of U2OS to TRAIL-induced apopotosis, suggesting that inhibition of c-FLIP is a good target for anti-cancer therapy.

Mechanism of Growth Inhibition by BCH in HEp2 Human Head and Neck Squamous Cell Carcinoma (사람 두경부 편평세포암종 HEp2 세포에서 BCH에 의한 세포성장 억제기전)

  • Choi, Bong-Kyu;Jung, Kyu-Yong;Cho, Seon-Ho;Kim, Chun-Sung;Kim, Do-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.555-560
    • /
    • 2008
  • Amino acid transporters are essential for the growth and proliferation in all living cells. Among the amino acid transporters, the system L amino acid transporters are the major nutrient transport system responsible for the $Na^+$-independent transport of neutral amino acids including several essential amino acids. The L-type amino acid transporter 1 (LAT1), an isoform of system L amino acid transporter, is highly expressed in cancer cells to support their continuous growth and proliferation. 2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) is a model compound for the study of amino acid transporter as a system L selective inhibitor. We have examined the effect and mechanism of BCH on cell growth suppression in HEp2 human head and neck squamous cell carcinoma. The BCH inhibited the L-leucine transport in a concentration-dependent manner with a $IC_{50}$ value of $51.2{\pm}3.8{\mu}M$ in HEp2 cells. The growth of HEp2 cells was inhibited by BCH in the timeand concentration-dependent manners. The formation of DNA ladder was not observed with BCH treatment in the cells. Furthermore, the proteolytic processing of caspase-3 and caspase-7 in the cells were not detected by BCH treatment. These results suggest that the BCH inhibits the growth of HEp2 human head and neck squamous cell carcinoma through the intracellular depletion of neutral amino acids for cell growth without apoptotic processing.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

Development and Assessment Individual Maximum Permissible Dose Method of I-131 Therapy in High Risk Patients with Differentiated Papillary Thyroid Cancer (물리학 선량법을 이용한 갑상선암의 개인별 최대안전용량 I-131 치료법 개발과 유용성 평가)

  • Kim, Jeong-Chul;Yoon, Jung-Han;Bom, Hee-Seung;JaeGal, Young-Jong;Song, Ho-Chun;Min, Jung-Joon;Jeong, Heong;Kim, Seong-Min;Heo, Young-Jun;Li, Ming-Hao;Park, Young-Kyu;Chung, June-Key
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.110-119
    • /
    • 2003
  • Purpose: Radioiodine (I-131) therapy is an effective modality to reduce both recurrence and mortality rates in differentiated thyroid cancer. Whether higher doses shows higher therapeutic responses was still debatable. The purpose of this study was to validate curve-fitting (CF) method measuring maximum permissible dose (MPD) by a biological dosimetry using metaphase analysis of peripheral blood lymphocytes. Materials and Methods: Therapeutic effects of MPD was evaluated in 58 patients (49 females and 9 males, mean age $50{\pm}11$ years) of papillary thyroid cancer. Among them 43 patients were treated with ${\Leq}7.4GBq$, while 15 patients with ${\geq}9.25GBq$. The former was defined as low-dose group, and the latter high-dose group. Therapeutic response was defined as complete response when complete disappearance of lesions on follow-up I-131 scan and undetectable serum thyroglobulin levels were found. Statistical comparison between groups were done using chi-square test. P value less than 0.05 was regarded as statistically significant. Results: MPD measured by CF method using tracer and therapeutic doses were $13.3{\pm}1.9\;and\;13.8{\pm}2.1GBq$, respectively (p=0.20). They showed a significant correlation (r=0.8, p<0.0001). Exposed doses to blood measured by CF and biological methods were $1.54{\pm}0.03\;and\;1.78{\pm}0.03Gy$ (p=0.01). They also showed a significant correlation (r=0.86, p=0.01). High-dose group showed a significantly higher rate of complete response (12/15, 80%) as compared to the low-dose group (22/43, 51.2%) (p=0.05). While occurrence of side effects was not different between two groups (40% vs. 30.2%, p=0.46). Conclusion: Measurement of MPD using CF method is reliable, and the high-dose I-131 therapy using MPD gains significantly higher therapeutic effects as compared with low-dose therapy.

Synchronous Mucoepidermoid Carcinoma of Parotid Gland and Unicentric Cervical Cathleman's Disease : A Case Report (점액표피양 암종과 동반된 경부 캐슬만 병 1예)

  • Noh, Min Ho;Bae, Kong Geun;Ban, Myung Jin;Park, Jae Hong;Lee, Seung Won;Park, Ki Nam;Kim, Jae Wook;Koh, Yoon Woo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.31 no.1
    • /
    • pp.14-17
    • /
    • 2015
  • Castleman's disease is an uncommon lymphoproliferative disorder. The disorder can be classified based on histological subtype, such as hyaline vascular type, plasma cell type, and mixed type, and can also be clinically divided into either unicentric or multicentric type. Its exact pathophysiology is not clearly identified. The unicentric type is able to be treated by surgical resection. However, there is no standard treatment modlity for the multicentric type. Treatment of multicentric type includes anti-cancer chemotherapy and radiation therapy. Recently, authors have experienced a rare case of unicentric type of Castleman's disease accompanying a mucoepidermoid carcinoma of parotid gland and report a case which is discussed with references.

  • PDF

Co-expression of MDRI and HLA-B7 Genes in a Mammalian Cell Using a Retrovirus

  • Lee, Seong-Min;Lee, Kyoo-Hyung;Kim, Hag-Dong;Lee, Je-Hwan;Lee, Jung-Shin;Kim, Joon
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.176-181
    • /
    • 2001
  • Using a retrovirus, foreign genes can be introduced into mammalian cells. The purpose of this study is to produce a retrovirus that can make the infected cells express two genes; the human multidrug resistance gene (MDR1) and the HLA-B7 gene, which is one of the major human histocompatibility complex (MHC) class I genes. For the expression of these genes, the internal ribosome entry site (IRES) was used, which was derived from the encephalomyocarditis (EMC) virus. In order to produce retroviruses, a retroviral vector was transfected into a packaging cell line and the transfected cells were treated with vincristine, which is an anti-cancer drug and a substrate for the MDRI gene product. This study revealed that two genes were incorporated into chromosomes of selected cells and expressed in the same cells. The production of the retrovirus was confirmed by the reverse transcription (RT)-PCR of the viral RNA. The retrovirus that was produced infected mouse fibroblast cells as well as the human U937. This study showed that packaging cells produced the retroviruses, which can infect the target cells. Once the conditions for the high infectivity of retrovirus into human cells are optimized, thus virus will be used to infect hematopoietic stem cells to co-express MDRl and HLA-B7 genes, and develop the lymphocytes that can be used for the immnogene therapy.

  • PDF