• Title/Summary/Keyword: Anti-cancer plant

Search Result 343, Processing Time 0.029 seconds

Role of NADPH Oxidase-Mediated Generation of Reactive Oxygen Species in the Mechanism of Apoptosis Induced by Phenolic Acids in HePG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1183-1189
    • /
    • 2005
  • Although plant-derived phenolic acids have been reported to have anti-cancer activity, the exact mechanism is not completely understood. In this study, we investigated the role for reactive oxygen species (ROS) as a mediator of the apoptosis induced by caffeic acid (CA) and ferulic acid (FA), common phenolic acids in plants in HepG2 human hepatoma cells. CA and FA reduced cell viability, and induced apoptotic cell death in a dose-dependent manner. In addition, they evoked a dose-related elevation of intracellular ROS. Treatment with various inhibitors of NADPH oxidase (diphenylene iodonium, apocynin, neopterine) significantly blunted both the generation of ROS and the induction of apoptosis induced CA and FA. These results suggest that ROS generated through activation of NADPH oxidase may play an essential role in the apoptosis induced by CA and FA in HepG2 cells. These results further suggest that CA and FA may be valuable for the therapeutic management of human hepatomas.

Antioxidative effect and anti-apoptosis effect of extract from Betula platyphylla var. japonica

  • Ju, Eun-Mi;Kwon, Hee-Young;Kim, Jeong-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.157.3-158
    • /
    • 2003
  • The antioxidant and anticancer properties of a medicinal plant, Betula platyphylla var. japonica were investigated. The total methanol extract of B. platyphylla var. japonica had protective effects against hydrogen peroxide ($H_2O_2$) in the Chinese hamster lung fibroblast (V79-4) cell line and induced apoptotic cell death in human promyelocytic leukemia (HL-60) cells, a cancer cell line. B. platyphylla var. japonica extract significantly increased cell viability against $H_2O_2$. The extract also showed high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity ($IC_50$ 2.4 mg/ml) and lipid peroxidation inhibitory activity ($IC_50$ below 4.0 mg/ml). (omitted)

  • PDF

Anti-obesity Effect of Salsola collina Ethanol Extract (솔장다리 추출물의 항비만 효과)

  • Jin, Kyong-Suk;Lee, Su Hyeon;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.888-895
    • /
    • 2017
  • Salsola collina (S. collina) is an annual plant widely distributed in drought and semi-drought areas, which has been used for a long time as a kind of folk remedy in traditional Chinese medicine for the treatment of hypertension. Previously, the anti-oxidative and anti-cancer activities of S. collina were elucidated in our research group. In this study, the anti-obesity activities of S. collina ethanol extract (SCEE) were evaluated using a pancreatic lipase enzyme inhibition assay and cell culture model. The results showed that SCEE effectively suppressed pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCEE significantly suppressed adipocyte differentiation, lipid accumulation, and triglyceride (TG) content, and triggered lipolysis on insulin, dexamethasone, and 3-isobutyl-l-methylxanthine-treated 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Its anti-obesity effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene, as well as protein expressions. Taken together, these results offer the important new insight that S. collina possesses anti-obesity properties, such as pancreatic lipase inhibition and anti-adipogenic and lipolysis effects through the modulation of their upstream signaling pathway. It could become a promising source in the field of nutraceuticals, and the identification of active compounds that confer the biological activities of SCEE may be needed.

An International Collaborative Program To Discover New Drugs from Tropical Biodiversity of Vietnam and Laos

  • Soejarto, Djaja D.;Pezzuto, John M.;Fong, Harry H.S.;Tan, Ghee Teng;Zhang, Hong Jie;Tamez, Pamela;Aydogmus, Zeynep;Chien, Nguyen Quyet;Franzblau, Scott G.;Gyllenhaal, Charlotte;Regalado, Jacinto C.;Hung, Nguyen Van;Hoang, Vu Dinh;Hiep, Nguyen Tien;Xuan, Le Thi;Hai, Nong Van;Cuong, Nguyen Manh;Bich, Truong Quang;Loc, Phan Ke;Vu, Bui Minh;Southavong, Boun Hoong
    • Natural Product Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • An International Cooperative Biodiversity Group (ICBG) program based at the University of Illinois at Chicago initiated its activities in 1998, with the following specific objectives: (a) inventory and conservation of of plants of Cuc Phuong National Park in Vietnam and of medicinal plants of Laos; (b) drug discovery (and development) based on plants of Vietnam and Laos; and (c) economic development of communities participating in the ICBG project both in Vietnam and Laos. Member-institutions and an industrial partner of this ICBG are bound by a Memorandum of Agreement that recognizes property and intellectual property rights, prior informed consent for access to genetic resources and to indigenous knowledge, the sharing of benefits that may arise from the drug discovery effort, and the provision of short-term and long-term benefits to host country institutions and communities. The drug discovery effort is targeted to the search for agents for therapies against malaria (antimalarial assay of plant extracts, using Plasmodium falciparum clones), AIDS (anti-HIV-l activity using HOG.R5 reporter cell line (through transactivation of the green fluorescent protein/GFP gene), cancer (screening of plant extracts in 6 human tumor cell lines - KB, Col-2, LU-l, LNCaP, HUVEC, hTert-RPEl), tuberculosis (screening of extracts in the microplate Alamar Blue assay against Mycobacterium tuberculosis $H_{37}Ra\;and\;H_{37}Rv),$ all performed at UIC, and CNS-related diseases (with special focus on Alzheimer's disease, pain and rheumatoid arthritis, and asthma), peformed at Glaxo Smith Kline (UK). Source plants were selected based on two approaches: biodiversity-based (plants of Cuc Phuong National Park) and ethnobotany-based (medicinal plants of Cuc Phuong National Park in Vietnam and medicinal plants of Laos). At mc, as of July, 2001, active leads had been identified in the anti-HIV, anticancer, antimalarial, and anti- TB assay, after the screening of more than 800 extracts. At least 25 biologically active compounds have been isolated, 13 of which are new with anti-HIV activity, and 3 also new with antimalarial activity. At GSK of 21 plant samples with a history of use to treat CNS-related diseases tested to date, a number showed activity against one or more of the CNS assay targets used, but no new compounds have been isolated. The results of the drug discovery effort to date indicate that tropical plant diversity of Vietnam and Laos unquestionably harbors biologically active chemical entities, which, through further research, may eventually yield candidates for drug development. Although the substantial monetary benefit of the drug discovery process (royalties) is a long way off, the UIC ICBG program provides direct and real-term benefits to host country institutions and communities.

Induction of Apoptosis by Water Extract of Glycyrrhizae radix in Human Bladder T24 Cancer Cells (인체 방광암 T24 세포에서 감초(Glycyrrhizae radix) 열수추출물에 의한 apoptosis 유도)

  • Lee, Ki Won;Kim, Jeong Il;Lee, Seung Young;Choi, Kyung-Min;Oh, Young Taek;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.255-263
    • /
    • 2019
  • Glycyrrhizae radix is one of the most frequently prescribed ingredients in Oriental medicine, and Glycyrrhizae radix extract has been shown to exert anti-cancer effects. However, the cellular and molecular mechanisms of programed cell death (apoptosis) by Glycyrrhizae radix are poorly defined. In the present study, it was examined the molecular mechanisms of apoptosis by water extracts of Glycyrrhizae radix (GRW) in human bladder T24 cancer cells. It was found that GRW could inhibit the cell growth of T24 cells in a concentration-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, DNA fragmentation and increased populations of annexin-V positive cells. The induction of apoptotic cell death by GRW was connected with an up-regulation of pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic proteins (Bcl-2 and Bcl-xL), and inhibition of apoptosis family proteins (XIAP, cIAP-1 and cIAP-2). In addition, apoptosis-inducing concentrations of GRW induced the activation of caspase-9, an initiator caspase of the mitochondrial-mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of PARP. GRW also induced apoptosis via a death receptor-mediated extrinsic pathway by caspase-8 activation, resulting in the down-regulation of total Bid and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. Taken together, the present results suggest that GRW may be a potential chemotherapeutic agent for the control of human bladder cancer cells.

THE STUDY ON TISSUE CULTURED WILD MOUNTAIN GINSENG(Panax Ginseng C.A. Meyer) ADVENTITIOUS ROOTS EXTRACT AS A COSMETIC INGREDIENT

  • Jung, Eun-Joo;Park, Jong-Wan;Kim, Joong-Hoi;Paek, Kee-Yoeup
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.611-616
    • /
    • 2003
  • Korean ginseng(Panax Ginseng C.A. Meyer) known as a oriental miracle drug is an important medicinal plant. Ginseng has been used for geriatric, tonic, stomachic, and aphrodisiac treatments for thousands years. Also, it is an antibiotic and has therapeutic properties against stress and cancer. Ginseng is widely distributed all over the world. Among them, Korean mountain ginseng has the most valuable effect on pharmaceuticals. The roots of mountain ginseng contained several kinds of ginsenosides that have many active functions for the human body. However, the study of mountain ginseng has a limit because the mountain ginseng is very expensive and rare. So, we artificially cultured mountain ginseng adventitious roots using the bioreactor culture system. We induced callus from original mountain ginseng, directly dug up in mountain and aged about one hundred ten years. Separated adventitious roots were precultured in 500ml conical flasks and then, transferred in 20L bioreactors. The adventitious roots of mountain ginseng were harvested after culturing for 40days, dried and then, extracted with several solvents. In this study, we investigated the whitening effect, anti-wrinkle effect and the safety of tissue cultured adventitious roots extract of mountain ginseng in order to identify the merit as a cosmetic ingredient. Particularly, extract of mountain ginseng adventitious roots showed whitening and anti-wrinkle effects. The inhibitory effect of this extract on the melanogenesis was examined using B-16 melanoma cell. When B-16 melanoma cells were cultured with adventitious root extract, there was a dramatically decrease in melanin contents of 8-16 melanoma cell. And we identified this extract inhibited Dopa auto-oxidation significantly. Also, when transformed mouse fibroblast L929 cells were treated with this extract, there was a significant increase in collagen synthesis. The results show significant inhibited melanization and wrinkle without inhibiting cell viability.

  • PDF

Effect of Boehmeria nivea on Adipocyte Differentiation and Angiogenesis (모시풀 추출물이 지방세포분화와 혈관신생에 미치는 영향)

  • Chung, Min-Yu;Kim, Sung Hee;Choi, Hyo-Kyoung;Park, JaeHo;Hwang, Jin-Taek
    • KSBB Journal
    • /
    • v.31 no.3
    • /
    • pp.145-150
    • /
    • 2016
  • Boehmeria nivea (L.) Gaud., a flowering plant, has been widely cultivated in Asian countries including Korea. It has been reported that B. nivea exhibits health beneficial effects for the prevention of inflammation, oxidative stress, and virus-related diseases. In this study, we evaluated the inhibitory effect of B. nivea on adipocyte differentiation and angiogenesis. DPPH radical scavenging activities of 70% ethanol extract of B. nivea (EBN) and water extract of B. nivea (WBN) were $90.8{\pm}1.1%$ and $20{\pm}6.9%$, respectively. EBN was also effective in the reduction of adipocyte differentiation in 3T3-L1 cells. We next examined the transcriptional activity of peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$), a pivotal target for anti-obesity. We found that treatment with rosiglitazone induced the transactivation of $PPAR-{\gamma}$. Under the same condition, $800{\mu}g/mL$ EBN reduced the transactivation of $PPAR-{\gamma}$ in rosiglitazone-induced cells. These results demonstrate that EBN-inhibited adipocyte differentiation was accompanied by $PPAR-{\gamma}$ inhibition. The study also tested whether EBN exhibits an anti-angiogenic effect by inhibiting tube formation in HUVECs. We found that EBN effectively inhibits tube formation, suggesting that EBN exhibited an anti-angiogenic effect. Taken together, B. nivea can be used as a functional food for the prevention of obesity and angiogenesis-related diseases including cancer.

Induction of Apoptotic Cell Death by Methanol Extract of Houttuynia cordata Thunb. in A549 Human Lung Carcinoma Cells (어성초 메탄올 추출물에 의한 A549 인체 폐암세포 사멸유도에 관한 연구)

  • Hong, Su-Hyun;Park, Cheol;Hong, Sang-Hoon;Choi, Byung-Tae;Lee, Yong-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1584-1592
    • /
    • 2006
  • Houttuynia cordata Thunb, well known as 'E-Sung-Cho' in Korea, is traditional medicinal plant generally used in Oriental medicine therapy. We previously reported that the water extract of H. cordata inhibited cell proliferation and induced apoptosis in human breast carcinoma cells. In the present study, we investigated the biochemical mechanisms of anti-proliferative effects by the methanol extract of H. cordata (MEHC) in human lung carcinoma A549 cells. It was found that MEHC could inhibit the cell growth in a dose-dependent manner, which was associated with morphological change and apoptotic cell death as determined by formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase cells. Apoptosis of A549 cells by MEHC was also connected with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. MEHC treatment induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant inhibition of poly(ADP-ribose) polymerase (PARP), ${\beta}$-catenin and phospholipase (PLC)-${\gamma}$1 protein expression. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. cordata.

Induction of G2/M Arrest and Apoptosis by the Methanol Extract of Typha orientalis in Human Colon Adenocarcinoma HT29 Cells (포황 메탄올 추출물에 의한 인체 대장암 세포주 HT29의 G2/M Arrest 및 Apoptosis 유발)

  • Jin, Soojung;Yun, Seung-Geun;Oh, You Na;Lee, Ji-Young;Park, Hyun-Jin;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.425-432
    • /
    • 2013
  • Typha orientalis, also known as bulrush or cattail, is a perennial herbaceous plant found in freshwater wetlands and has been widely used in constructed wetlands for wastewater treatment. Recent data has revealed that SH21B, a mixture composed of seven herbs including T. orientalis, exhibited an anti-adipogenic activity by the inhibition of the expression of adipogenic regulators. However, the anti-cancer effect of T. orientalis and its molecular mechanisms remain unclear. In this study, we evaluated the anti-cancer effect and its mechanism in the methanol extract of T. orientalis (METO) on human colon carcinoma HT29 cells. It was found that METO treatment showed cytotoxic activity in a dose-dependent manner, and induced G2/M cell cycle arrest and apoptosis in HT29 cells. The induction of G2/M arrest by METO was associated with the up-regulation of phospho-Cdc2 (Tyr15), an inactive form of Cdc2 and the down-regulation of Cdc25c phosphatase. METO also induced tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) expression. In addition, METO-induced apoptosis was characterized by the proteolytic activation of caspase-3, degradation of poly ADP ribose polymerase (PARP), and up-regulation of death receptor FAS and pro-apoptotic Bax expression. Collectively, these results indicate that the cell cycle inhibition and apoptosis induction of METO in HT29 cells allows for the possibility of its use in anti-cancer therapies.

Curcumin Induces Downregulation of E2F4 Expression and Apoptotic Cell Death in H CT116 Human Colon Cancer Cells; Involvement of Reactive Oxygen Species

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.391-397
    • /
    • 2010
  • E2F transcription factors and their target genes have been known to play an important role in cell growth control. We found that curcumin, a polyphenolic phytochemical isolated from the plant Curcuma longa, markedly suppressed E2F4 expression in HCT116 colon cancer cells. Hydrogen peroxide was also found to decrease E2F4 protein level, indicating the involvement of reactive oxygen species (ROS) in curucmin-induced downregulation of E2F4 expression. Involvement of ROS in E2F4 downregulation in response to curcumin was confirmed by the result that pretreatment of cells with N-acetylcystein (NAC) before exposure of curcumin almost completely blocked the reduction of E2F4 expression at the protein as well as mRNA level. Anti-proliferative effect of curcumin was also suppressed by NAC which is consistent to previous reports showing curcumin-superoxide production and induction of poly (ADP-ribose) polymerase (PARP) cleavage as well as apoptosis. Expression of several genes, cyclin A, p21, and p27, which has been shown to be regulated in E2F4-dependent manner and involved in the cell cycle progression was also affected by curcumin. Moreover, decreased (cyclin A) and increased (p21 and p27) expression of these E2F4 downstream genes by curcumin was restored by pretreatment of cells with NAC and E2F4 overexpression which is induced by doxycycline. In addition, E2F4 overexpression was observed to partially ameliorate curcumin-induced growth inhibition by cell viability assay. Taken together, we found curcumin-induced ROS down-regulation of E2F4 expression and modulation of E2F4 target genes which finally lead to the apoptotic cell death in HCT116 colon cancer cells, suggesting that E2F4 appears to be a novel determinant of curcumin-induced cytotoxicity.