• Title/Summary/Keyword: Anti-apoptosis

Search Result 1,631, Processing Time 0.033 seconds

Anti-apoptosis Engineering

  • Kim, Eun-Jeong;Park, Tai-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.76-82
    • /
    • 2003
  • An increased understanding of apoptosis makes anti-apoptosis engineering possible, which is an approach used to inhibit apoptosis for the purpose of therapeutic, or industrial applications in the treatment of the diseases associated with increased apoptosis, or to improve the productivity of animal cell cultures, respectively. Some known anti-apoptosis proteins are the Bcl-2 family, IAP (inhibitor of apoptosis) and Hsps (heat shock proteins), with which anti-apoptosis engineering has progressed. This article reviews anti-apoptosis engineering using known anti-apoptosis compounds, and introduces a 30 K protein, isolated from silkworm hemolymph, as a novel anti-apoptotic protein, that Shows no homology with other known anti-apoptotic proteins. The regulation of apoptosis, using anti-apoptotic proteins and genes originating from the silkworm, Bombyx mori, may provide a new strategy in this field.

Anti-apoptosis effects by Eimeria tenella infection in Madin-Darby bovine kidney cells

  • Lee, Hyun-A;Hong, Sun-Hwa;Chung, Yung-Ho;Kim, Ok-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • Apoptosis is a host defense mechanism that the cell uses to limit production of infectious pathogens. Although many bacteria, viruses and parasites can induce apoptosis in infected cells, some pathogens usually exhibit the ability to suppress the induction of apoptosis in the infected cells. Sophisticated evasion strategies of obligate intracellular parasites, in particular prevention of host cell apoptosis, are necessary to ensure successful replication. To study the ability of Eimeria tenella in this regard, in vitro experiments were performed applying Madin-Darby bovine kidney (MDBK) cells as host cell. We have demonstrated that productive infection of adherent cell lines by E. tenella resulted in an anti-apototic effect. This phenomenon was confirmed using in situ terminal deoxynucleotidyl transferase-mediated (TdT) deoxyuridine triphosphates (dUTP)-fluorescein nick end labeling (TUNEL) assay to detect apoptosis. Therefore, E. tenella could complete its cycle of productive infection while inducing anti-apoptosis in the infected cells. This finding might have implications for the pathobiology of E. tenella and other Eimeria species.

Co-expression of Survivin and Bcl-2 in Primary Brain Tumors : Their Potential Effect on Anti-apoptosis

  • Ryu, Je-Il;Kim, Choong-Hyun;Cheong, Jin-Hwan;Bak, Koang-Hum;Kim, Jae-Min;Oh, Suck-Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Objective : Survivin is an inhibitor of apoptosis protein[IAP], which inhibits apoptosis through a pathway distinct from the Bcl-2 family members. Overexpression of survivin and Bcl-2 have been commonly reported in human neoplasms. The authors investigate whether there is a synergistic effect on the anti-apoptosis rate of primary brain tumors "in situ" based on the co-expression of survivin and Bcl-2. Methods : One hundred and two brain tumor patients who had been resected were included in this study. Survivin tin and Bcl-2 were detected by Western blotting analysis, while apoptosis was examined by DNA fragmentation analysis. An anti-apoptotic rate was assessed in these brain tumor samples based on the expression of survivin and Bcl-2 or co-expression of both. Results : Survivin and Bcl-2 were expressed in 57[55.9%] and 53[52.0%] of 102 brain tumor samples studied respectively, and co-expressed in 31[30.4%]. The percentage of astrocytic and meningeal tumors expressing survivin was significantly correlated with histological grades; however, Bcl-2 was not correlated [p=0.106]. The anti-apoptotic rate in primary brain tumors with survivin, Bcl-2, and both was detected in 49[86.0%] of 57 samples, 42[79.9%] of 53 samples, and 27[87.1%] of 31 samples, respectively. Their difference in the frequency of anti-apoptosis was not significant. Conclusion : Survivin or Bcl-2 is involved in the anti-apoptosis. However, it suggests that co-expression of survivin and Bcl-2, together, have no synergistic effect on the anti-apoptotic properties of the primary brain tumors.

Comparison between Doxorubicin and Anti-Fas Antibody induced poptosis in Promyelocytic Leukemia Cell Line HL-60 (전골수성 백혈병 세포주 HL-60에 대한 Doxorubicin 유발성 Apoptosis와 Anti-Fas 항체 유발성 Apoptosis의 비교)

  • 윤경식;설지연;오현정;이광수;이원규;정성철
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 1999
  • Induction of apoptosis is considered to be the underlying mechanism that accounts for the efficiency of chemotherapeutic drugs. It has recently been proposed that doxorubicin (DOX) can induce apoptosis in human leukemic cells via the Fas/Fas Ligand (FasL) system. Comparison of Fas and FasL mRNA expression between drug- and anti-Fas antibody(Fas-Ab)- induced apoptosis was analyzed for examining the role of Fas/FasL system in the mediation of drug-induced apoptosis. After HL-60 cells were routinely cultured, MTT assay was performed for cytotoxicity test. Giemsa staining was carried out to monitor the apoptosis morphologically. By semiquantitative RT-PCR analysis, the expression of Fas and FasL at 4, 10, 24 hours was determined after DOX and Fas-Ab treatment. Dose-dependent cytotoxicity was induced by DOX-treatment, while Fas-Ab treatment showed the similar dose-dependent pattern but the cytotoxicity is not reached at LD$_{50}$ at 100 ng/ml concentration of Fas-Ab. In the 10ng/m1 DOX and 10ng/m1 Fas-Ab treated group, typical apoptotic cell morphology was shown such as fragmented nuclei and cell membrane budding in the Giemsa-stained slide. Fas mRNA expression was not changed significantly in the both groups. But, FasL mRNA expression was induced significantly at initial period of apoptosis. In this study, Fas/FasL interaction assumed to be involved in drug-induced apoptosis.s.

  • PDF

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

Induction of Mitochondria-mediated Apoptosis by Solanum Nigrum in Leukemia Cells (용규(龍葵) 추출물이 백혈병 세포의 Apoptosis 유도에 미치는 영향)

  • Chang, Gyu-Tae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2008
  • Objectives In human myeloid leukemia cells, there are no specific features of apoptosis compared with apoptosis in other cell types. Solanum nigrum L.(SNL) is a deciduous tree, which is widely distributed in Korea with reported anti-tumor, anti-inflammatory and non-specific immune-enhancing properties. Although the plant has been clinically used for treating a variety of diseases, its bioactive ingredients are unknown and its mode of action potential has never been investigated. Thus anti-tumor property of methanol extract was investigated. Methods In this study, anti-tumor property of methanol extract was investigated by determining its in vitro growth-inhibitory effects on human myeloid leukemia cells. XTT proliferation assay, DNA fragmentation, immunoblot analysis, densitometric analysis were used. Results 1. The methanol fraction of the extracts of SNL induced mitochondria-mediated apoptosis in human myeloid leukemia cells. 2. The methanol fraction exhibited relatively higher cytotoxic activity in a dose-dependent manner than chloroform, and hexane fraction. 3. Typical ladder profile of Oligonucleosomal fragments were appeared. 4. The secreted cytosolic cytochrome C level was increased by treatment of methanol fraction. Conclusions Methanol fraction of SNL is capable of inducing apoptosis in human myeloid leukemia cells.

  • PDF

Shikonin Induced Apoptosis and Inhibited Angiogenesis on HSE Cells

  • Lee Soo-Jin;Kim Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1363-1369
    • /
    • 2005
  • Previously we have shown that shikonin has strong anti-tumor activities via inducing apoptosis and suppressing metastasis on LLC cells in vivo and in vitro. Here we have investigated anti-angiogenic potential of shikonin and its possible mechanism of action in HSE cells. Shikonin inhibited the proliferation of HSE cells in a concentration-dependent manner. It was shown that this proliferation inhibition was caused by apoptosis induced by shikonin via BrdU incorporation and Western blotting analysis. Shikonin treatment was caused that decrease of activation of caspases and cleavage of PARP. And shikonin induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Moreover, shikonin showed anti-angiogenic activities inhibiting tube-like formation of HSE cells in vitro and vascular formation of LLC cells in vivo. These findings suggest that shikonin may a possible candidate not only anti-metastatic agent but also anti-angiogenic agent.

Autophagy Inhibition Promotes Quercetin Induced Apoptosis in MG-63 Human Osteosarcoma cells

  • Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • Quercetin is a natural flavonoid phytochemical that is extracted from various plants. Having an advantages due to its varied biological properties, such as anti-inflammatory, anti-viral, anti-oxidant, and anti-cancer effects, quercetin is used to treat many diseases. Recently, it has been reported that autophagy inhibition may play a key role in anti-cancer therapy. Therefore, in this study, we investigated the molecular mechanisms and anti-cancer effects of quercetin in human osteosarcoma cells via autophagy inhibition. We ascertained that quercetin inhibited cell proliferation and induced cell death, these process is demonstrated that apoptosis via the mitochondrial pathway and the caspase cascade. Quercetin also induced autophagy which was inhibited by 3-MA, autophagy inhibitor and the blockade of autophagy promoted the quercetin-induced apoptosis, confirming that autophagy is a pro-survival process. Thus, these findings demonstrate that quercetin is an effective anti-cancer agent, and the combination of quercetin and an autophagy inhibitor should enhance the effect of anti-cancer therapy.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Mak ino in Human Leuk emia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Eun Jung Ahn;Chul Hwan Kim;Jin-Woo Jeong;Buyng Su Hwang;Min-Jeong Seo;Kyung-Min Choi;Su Young Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.77-77
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins (XIAP, cIAP-1, survivin), depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

  • PDF

CD4O Activation Protects Dendritic Cells from Anticancer Drug-Induced Apoptosis

  • Jun, Jae-Yeon;Joo, Hong-Gu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.255-259
    • /
    • 2003
  • Dendritic cells (DCs) play a critical role in various immune responses involving $CD4^+$ T cells and have been used to generate anti-tumor immunity. Chemotherapy induces severe side effects including immunosuppression in patients with cancer. Although immunosuppression has been studied, the effects of anticancer drugs on DCs are not fully determined. In this study, we demonstrated that CD40 activation strongly protected DCs from 5-fluorouracil (5-FU) or mitomycin C-induced apoptosis. DCspecific surface markers, including CD11c and major histocompatibility complex (MHC) class II, were used for identifying DCs. CD 40 activation with anti-CD40 mAb significantly enhanced the viability of DCs treated with 5-FU or mitomycin C, assayed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide). Fluorescence staining and analysis clearly confirmed the enhancing effect of anti-CD40 mAb on the viability of DCs, suggesting that CD40 activation may transduce critical signals for the viability of DCs. Annexin V staining assay showed that CD40 significantly protected DCs from 5-FU or mitomycin C-induced apoptosis. Taken together, this study shows that CD40 activation with anti-CD40 mAb has strong anti-apoptosis effect on DCs, suggesting that CD40 activation may overcome the immunosuppression, especially downregulation of number and function of DCs in chemotherapy-treated cancer patients.