• 제목/요약/키워드: Anti-angiogenic

검색결과 204건 처리시간 0.022초

LKB1/STK11 Tumor Suppressor Reduces Angiogenesis by Directly Interacting with VEGFR2 in Tumorigenesis

  • Seung Bae Rho;Hyun Jung Byun;Boh-Ram Kim;Chang Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.456-465
    • /
    • 2023
  • Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

종양 미세 환경 내 대식세포에서 혈관 신생 조절 인자로서의 TNF-α에 의한 IFN-γ의 분비 조절 (Production of IFN-γ by TNF-α in Macrophages from Tumor Micro Environment; Significance in Angiogenic Switch Control)

  • 표석능;백소영;곽장동;박대섭;조성준;이현아
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.53-60
    • /
    • 2003
  • Background: The role of macrophages in tumor angiogenesis is known to be the production of angiogenic cytokines and growth factors including TNF-${\alpha}$. Recently, macrophage also can produce the INF-${\gamma}$ that is being studied to be involved in angiogenic inhibition. Thus, the importance of macrophages in tumor angiogenesis is might being an angiogenic switch. Thus, the hypothesis tested here is that TNF-${\alpha}$ can modulate the INF-${\gamma}$ production in the macrophages from tumor environment as a part of tumor angiogenic switch. Methods: Macrophages in tumor environment were obtained from the peritoneal cavity of C57BL/6 mice injected with B16F10 melanoma cell line for 6 or 11 days. $Mac1^+$-macrophages were purified using magnetic bead ($MACs^{TM}$; Milteny Biotech, Germany) and cultured with various concentrations of TNF-${\alpha}$ for various time points at $37^{\circ}C$. The supernatants were analyzed for IFN-${\gamma}$ or VEGF by ELISA kit (Endogen, Woburn, MA). Results: Residential macrophages from the peritoneal cavity did not respond to LPS or TNF-${\alpha}$ to produce INF-${\gamma}$. However, the cells from tumor environment produced IFN-${\gamma}$ as well as VEGF and upregulated by the addition of LPS or TNF-${\alpha}$. RT-PCR analysis revealed the external TNF-${\alpha}$-induced IFN-${\gamma}$ gene expression in the macrophages from tumor environment. Conclusion: The overall data suggest that the macrophages in tumor environment might have an important role not only in angiogenic signal but also in anti-angiogenic signal by producing related cytokines. And TNF-${\alpha}$ might be a key cytokine in tumor angiogenic switch.

타액선 종양에서 혈관형성 인자의 발현에 관한 면역조직화학적 비교 연구 (COMPARATIVE IMMUNOHISTOCHEMICAL ASSAYS FOR THE EXPRESSION OF ANGIOGENIC FACTORS IN TUMORS OF HUMAN SALIVARY GLANDS)

  • 인연수;김성민;박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권1호
    • /
    • pp.10-23
    • /
    • 2007
  • Hallmarks of clinical behaviors of adenoid cystic carcinoma(ACC) of salivary glands are the delayed onset of vascular metastasis and poor responses to classical chemotherapeutic agents. Poor prognoses from salivary ACC are caused by lung metastases that are resistant to conventional therapy. Therefore, cellular and molecular characteristics that influence the dissemination of metastatic cells are important for the design of more effective treatment of salivary ACC. Tumor angiogenesis has been known to be essential for the distant metastasis of malignant cells. So, we determined expressions of angiogenic proteins in benign (pleomorphic adenoma) and malignant (ACC, mucoepidermoid carcinoma) tumors of salivary glands and compared each other and to those in oral squamous cell carcinoma. Using surgical specimens, we performed immunohistochemical assays with anti-vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), phosphorylated VEGFR-2 (pVEGFR-2), matrix metalloproteinase (MMP)-9, and interleukin (IL)-8 antibodies. Most angiogenic factors were overexpressed in malignant salivary tumors than in pleomorphic adenoma which is benign nature. Moreover, ACC demonstrated more expression of VEGFR-2 than that of squamous cell carcinoma which used as control. Conclusively, these data show those angiogenic factors produced by salivary gland tumors may affect the propagation and metastasis of malignant cells of salivary tumors, and could be used as biomarkers for the malignant transformation of salivary gland tumors. Prospectively, although further studies will be needed, these biomarkers related to angiogenesis can be molecular targets for the therapy of salivary ACC, which has propensity for delayed vascular metastasis.

Anti-Angiogenic Activity of Gecko Aqueous Extracts and its Macromolecular Components in CAM and HUVE-12 Cells

  • Tang, Zhen;Huang, Shu-Qiong;Liu, Jian-Ting;Jiang, Gui-Xiang;Wang, Chun-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.2081-2086
    • /
    • 2015
  • Gecko is a kind of traditional Chinese medicine with remarkable antineoplastic activity. However, undefined mechanisms and ambiguity regarding active ingredients limit new drug development from gecko. This study was conducted to assess anti-angiogenic properties of the aqueous extracts of fresh gecko (AG) or macromolecular components separated from AG (M-AG). An enzyme-linked immunosorbent assay (ELISA) approach was applied to detect the vascular endothelial growth factor (VEGF) secretion of the tumor cells treated with AG or M-AG. The effect of AG or M-AG on vascular endothelial cell proliferation and migratory ability was analyzed by tetrazolium dye colorimetric method, transwell and wound-healing assays. Chick embryo chorioallantoic membrane (CAM) assays were used to ensure the anti-angiogenic activity of M-AG in vivo. The results showed that AG or M-AG inhibited the VEGF secretion of tumor cells, the relative inhibition rates of AG and M-AG being 27.2% and 53.2% respectively at a concentration of $20{\mu}L/mL$. AG and M-AG inhibited the vascular endothelial (VE) cell proliferation with IC50 values of $11.5{\pm}0.5{\mu}L/mL$ and $12.9{\pm}0.4{\mu}L/mL$ respectively. The VE cell migration potential was inhibited significantly (p<0.01) by the AG (${\geq}24{\mu}L/mL$) or M-AG (${\geq}12\mu}L/mL$) treatment. In vivo, neovascularization of CAM treated with M-AG was inhibited significantly (p<0.05) at a concentration of ${\geq}0.4{\mu}L/mL$. This study provided evidence that anti-angiogenesis is one of the anti-tumor mechanisms of AG and M-AG, with the latter as a promising active component.

Anti-angiogenic, Anti-cell Adhesion Switch from Halophilic Enterobacteria

  • Lim, Jong Kwon;Seo, Hyo Jin;Kim, Eun Ok;Meydani, Mohsen;Kim, Jong Deog
    • 한국해양바이오학회지
    • /
    • 제1권3호
    • /
    • pp.156-162
    • /
    • 2006
  • The halophilic enterobacteria, Enterobacteria cancerogenus, was isolated from the intestines of the fusiform fish (Trachurus japonicus) to yield a protein-like material termed PLM-f74. PLM-f74 was characterized by strong inhibition ratios to angiogenesis (82.8% at the concentration of $18.5{\mu}g/mL$) and elevated antioxidative capacities with low toxicity. The PLM-f74 is a glycoprotein comprised of saccharides and amino acids. PLM-f74 inhibited non-activated U937 monocytic cell adhesion to HUVECs activated with IL-$1{\beta}$ by 78.0%, and the adherence of U937 cells treated with the PLM-f74 and stimulated with IL-$1{\beta}$ to unstimulated HUVECs decreased by 102%. When both cell types were pretreated with PLM-f74, the adhesion of U937 cells to IL-$1{\beta}$ stimulated HUVECs was completely suppressed by 121% at a concentration of 18.5 ug/mL. PLM-f74 blocked signal pathways from VEGFR2, PI3K, ${\beta}$-catenin and VE-cadherin to NF-kB based on western bolt analysis. And also inhibited IL-1-stimulated HUVEC expression of the adhesion molecules, ICAM-1 by 40%, VCAM-1 by 60%, and E-selectin by 70% at the same concentration noted above. New anti-angiogenic and anti-cell adhesion materials showing elevated antioxidative capacities and non-toxicity may be expected from these results.

  • PDF

Identification of Anti-Angiogenic and Anti-Cell Adhesion Materials from Halophilic Enterobacteria of the Trachurus japonicus

  • Lim, Jong-Kwon;Seo, Hyo-Jin;Kim, Eun-Ok;Meydani, Mohsen;Kim, Jong-Deog
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1544-1553
    • /
    • 2006
  • The halophilic enterobacteria, Enterobacteria cancerogenus, was isolated from the intestines of the fusiform fish (Trachurus japonicus) to yield a protein-like material termed PLM-f74. PLM-f74 was characterized by strong inhibition ratios to angiogenesis (82.8% at the concentration of $18.5{\mu}g/ml$) and elevated antioxidative capacities with low toxicity. The PLM-f74 is a glycoprotein comprised of saccharides and amino acids. PLM-f74 inhibited cell adhesion that non-activated U937 monocytic cell adhesion to HUVECs activated with $IL-1{\beta}$ by 78.0%, and the adherence of U937 cells treated with the PLM-f74 and stimulated with $IL-1{\beta}$ to unstimulated HUVECs decreased by 102%. When both cell types were pretreated with PLM-f74, the adhesion of U937 cells to $IL-1{\beta}$-stimulated HUVECs was completely suppressed by 121% at a concentration of $18.5{\mu}g/ml$. PLM-f74 blocked signal pathways from VEGFR2, PI3K, ${\beta}$-catenin, and VE-cadherin to NF-kB, based on western bolt analysis. It also inhibited IL-l-stimulated HUVEC expression of the adhesion molecules, ICAM-l by 40%, VCAM-l by 60%, and E-selectin by 70% at the same concentration noted above. New anti-angiogenic and anti-cell adhesion materials showing elevated antioxidative capacities, and non-toxicity may be expected from these results.

Antiangiogenic and Antitumor Activities of the Cryptic Fragments with Kringle Architecture

  • Joe, Young-Ae;Kim, Myung-Rae;Shim, Byoung-Shik;Oh, Dae-Shik;Hong, Sung-Hee;Hong, Yong-Kil
    • Biomolecules & Therapeutics
    • /
    • 제11권4호
    • /
    • pp.205-213
    • /
    • 2003
  • Various angiogenesis inhibitors target vascular endothelial cells and block tumor angiogenesis. Angiostatin is a specific endogenous angiogenesis inhibitor in clinical trials, which contains only the first four triple loop structures, known as kringle domains. Its generated by proteolytic cleavage of its parent molecule plasminogen, which itself does not exhibit antiangiogenic activity. Kringle domains from prothrombin, apolipoprotein, hepatocyte growth factor, urokinase and tissue-type plasminogen activator also elicit anti-angiogenic or antitumor activities in several model systems, albeit low amino acid sequence identity between angiostatin and each individual kringle. However, the differential effects of each kringle domain on endothelial cell proliferation, and migration observed in these kringle domains, suggest that the amino acid sequence of the primary structure is still important although kringle architecture is essential for anti-mlgiogenic activity. If it is further studied as to how amino acid sequence and kringle architecture contributes in anti-angiogenic activity, with studies on underlying mechanisms of anti-angiogenesis by kringle-based angiogenesis inhibitors, it will provide basis for the development of new potent anti-angiogenesis inhibitors and improvement of the efficacy of angiogenesis inhibitors.