• 제목/요약/키워드: Anti-Rolling Tank

검색결과 27건 처리시간 0.02초

감요수조(減搖水槽)의 성능(性能)에 관(關)하여(2) (On the Performance of the Anti-Rolling Tank(2))

  • 우봉구;인철환;구종도
    • 대한조선학회지
    • /
    • 제11권1호
    • /
    • pp.17-26
    • /
    • 1974
  • In this paper, authors investigate and analyze the effects of the anti-rolling tank which are calculated in accord with the tank damping coefficients by the computer, and which are represented with both the tank water's saturating state and the normal state in the irregular waves by analog computer. As the results of these studies, we immediately find that the tank optimum damping coefficient $b_{to}$, is 0.3877 due to calculating $\mu$-values, analyzing and comparing inclinations of $\mu$-values, and that although a nonlinear elements are included in the response character of the ship-tank system, the output is no longer Gaussian distribution, even when the sea waves are considered as Gaussian, and can not be expressed by the spectral forms which premise the superposition theory.

  • PDF

Anti-slosh effect of a horizontal porous baffle in a swaying/rolling rectangular tank: Analytical and experimental approaches

  • George, Arun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.833-847
    • /
    • 2021
  • The horizontal porous baffle and its effect as an anti-slosh device have been investigated intensively in a swaying and rolling rectangular tank. To accurately assess the level at which porous baffles reduce liquid sloshing, the Matched Eigenfunction Expansion Method (MEEM) has been utilized as an analytical tool. The velocity potentials in the horizontal baffle-covered fluid region are expressed by the sum of the homogeneous and particular solutions to avoid solving the complex dispersion equation. By applying an equivalent linearized quadratic loss model, the nonlinear algebraic equation is derived and solved by implementing the Newton-Raphson iterative scheme. To prove the validity of the present theoretical model, a series of experiments have been conducted with different centered horizontal porous baffles with varying porosities and submerged depths in a swaying and rolling rectangular tank. Reasonably good agreements are obtained regarding the analytical solutions and the experiment's findings. The influence of porosity, submerged depth, and length of a centered horizontal porous baffle on anti-slosh performance have been analyzed, especially at resonance modes. The developed predictive tool can potentially provide guidelines for optimal design of the horizontal porous baffle.

Coupled Motion Simulation of the Mobile Harbor and Anti-Rolling Devices in Waves

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun;Lew, Jae-Moon;Moon, Seok-Joon;Chung, Tae-Young
    • 한국항해항만학회지
    • /
    • 제34권4호
    • /
    • pp.271-279
    • /
    • 2010
  • The Mobile Harbor(MH) is a new transportation platform that can load and unload containers to and from very large container ships in the sea. This loading and unloading by crane can be performed with only very small movements of the MH in waves because MH is operated outside of the harbor. For this reason, an anti-rolling tank(ART) and an active mass driving system(AMD) were designed to reduce MH's roll motion, especially at the natural frequency of MH. In the conceptual design stage, it is difficult to confirm the design result of theses anti-rolling devices without modeling and simulation tools. Therefore, the coupled MH and anti-rolling devices' dynamic equations in waves were derived and a simulation program that can analyze the roll reduction performance in various conditions, such as sea state, wave direction, and so on, was developed. The coupled equations are constructed as an eight degrees of freedom (DOF) motion that consists of MH's six DOF dynamics and the ART's and AMD's control variables. In order to conveniently include the ART's and AMD's control dynamics in the time domain, MH's radiated wave force was described by an impulse response function derived by the damping coefficient obtained in the frequency domain, and wave exciting forces such as Froude-Krylov force and diffraction force and nonlinear buoyancy were calculated at every simulation time interval. Finally, the roll reduction performances of the designed anti-rolling devices were successfully assessed in the various loading and wave conditions by using a developed simulation program.

갑판타입수의 유입에 따른 Ro/Ro선 안정성 연구 (Stability of Ro/Ro Ship due to Deck Inflow)

  • Bong K. Woo;Young S. Kwon;Chul. H. Jo;Hyun W. Seo;Ihn S. Na;Kim, Doo H.
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.70-75
    • /
    • 2001
  • Intensive experimental investigations were carried out to provide information of the effects of inflow on the rolling characteristics and stability of ships, which becomes great concern in relation to ship's capsizing. A series of systematic experiments have been performed considering the effects cf combined motion of roll-heave-sway and relevant parameters, such as roll angle and period, tank water height etc. To accommodate this type of experiments with 3-degree of freedom of motion, a bench tester has been developed and verified using existing data. Also, theoretical application of anti-roll tank has been incorporated to support the process of investigation. A model of Ro-Ro ships is used in the present study as this type of vessels, as well as fishing vessels, with large open decks, can loose stability rapidly when there is inflow on the decks.

  • PDF

안티롤링 진자를 장치한 선박의 점성감쇠계 해석에 대한 연구 (A Study on Viscous Damping System of a Ship with Anti-Rolling Pendulum)

  • 박석주;장광호;이금주
    • 한국항해항만학회지
    • /
    • 제41권6호
    • /
    • pp.365-372
    • /
    • 2017
  • 부유체의 횡동요는 승조원의 피로를 누적시키고, 심지어 구조물 전체를 전복시키기까지 하고, 또 선체에 반복적인 외력을 가하는 등 부유체의 안정성과 구조물의 안전에 심대한 영향을 끼친다. 그래서 거의 모든 선박의 경우에는 빌지킬을 설치하여 횡동요를 감소시키고 있고, 특수한 경우에는 안티롤링 탱크나 핀 스태빌라이저나 자이로스코프 등을 설치하여 횡동요를 줄이고 있다. 그러나 안티롤링 탱크는 설치하는데 용적을 많이 차지하고, 핀 스태빌라이저나 자이로스코프는 설치비와 유지 관리비가 많이 든다. 저자들은 안티롤링진자를 이용한 부유체의 롤링저감에 대한 연구를 하여 실험과 Runge-Kutta 해석에 의하여 그 유효성을 보인 바 있다. 여기에서는 선박에 안티 롤링 진자를 설치한 모델을 2자유도 점성감쇠계로 선형화하여 시스템을 해석하고 실험과 비교하여 수학 모델의 정당성을 보이고, 수학 모델의 정당성을 바탕으로 최적의 안티 롤링 진자를 제안한다. 7.7kg의 모형선의 경우 모형선 질량의 0.26%인 20g의 안티롤링 진자가 가장 효율이 좋음을 보였다. 또 안티 롤링 진자의 질량이 다른 몇 가지 경우에 대하여서 자유 롤링 실험을 하여 안티 롤링 진자의 유효성을 보인다.

안티롤링 진자를 이용한 부유체의 횡동요 저감 (Reducing Ship Rolling with a Anti-Rolling Pendulum)

  • 박석주;이금주;박경일
    • 한국항해항만학회지
    • /
    • 제40권6호
    • /
    • pp.361-368
    • /
    • 2016
  • 부유체의 횡동요는 승조원의 피로를 누적시키고, 심지어 구조물 전체를 전복시키기 까지 하고, 또 선체에 반복적인 외력을 가하는 등 부유체의 안정성과 구조물의 안전에 심대한 영향을 끼친다. 그래서 거의 모든 선박의 경우에는 빌지킬을 설치하여 횡동요를 감소시키고 있고, 특수한 경우에는 안티롤링 탱크나 핀 스태빌라이저나 자이로스코프 등을 설치하여 횡동요를 줄이고 있다. 그러나 안티롤링 탱크는 설치하는데 용적을 많이 차지하고, 핀 스태빌라이저나 자이로스코프는 설치비와 유지 관리비가 많이 든다. 본 연구에서는 안티롤링 진자를 이용하여 부유체의 횡동요를 줄이고자 한다. 보통 단진자라고 하면 질량체를 끈으로 어디엔가 고정시켜 놓고 자유롭게 흔들리는 구조를 말한다. 여기에서는 통상의 진자 대신에 진자를 원궤도에 올려놓아서 단진동 운동을 하도록 하는 원리를 이용한다. 제안한 장치를 실험선에 적용하여 그 효능을 입증하였다. 안티롤링 탱크의 약 1/8의 중량과 약 1/6의 용적을 가진 안티롤링 진자를 이용하여 이것보다 더 좋은 효과를 낼 수 있음을 확인하였다. 여기에 더하여 선체에 안티롤링 진자를 부가한 모델의 선형운동방정식과 비선형 운동방정식을 제시하였다.

수동형 감요수조 설계를 위한 벤치테스터 개발 (Development of Bench Tester for Designing the Passive Anti-Rolling Tanks)

  • 류재문;김효철
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.452-459
    • /
    • 2015
  • It is important to use bench test results in the design process of anti-rolling tanks. Traditional bench tester is usually designed to perform only roll motions about a fixed axis and relatively small so that the viscous effects may not be neglected. Novel bench tester which could adjust the motion center to realize the coupled motion of sway and roll has been devised and manufactured therefore, large scaled bench tester could be utilized for designing the passive anti-rolling tanks. The time history of the reference signal from the rotation sensor of the bench tester have been recorded and processed to determine the phase angle to derive the Response Amplitude Operator(RAO) of the stabilized ship. The breadth of ART tank model should be large up to 2 m to diminish viscous scale effect and the vertical position of the tank can be varied with the ship's center of motion. The periods and the amplitude of roll motion can be varied from 1.5 sec to 5 sec and up to ±20°, respectively. The components of the tester was expressed in three dimensional digital mockup (DMU) and assembled together in the CAD space. The final configuration of the bench tester has been determined by confirming the smooth operation of the moving parts without interference through the animation in CAD space. New analytic logic are introduced for the determination of hydrodynamic moment and phase difference due to fluid motion in ART and verified through the test. The developed bench tester is believed to be effective and accurate for the verification of stabilization effect of ART taking into the consideration of the sway effect in the design stage.

스텝 붙이 활주형 모터보트 선미부가물의 횡요저감효과에 관한 연구 (A Study on the Anti-rolling Effect of Stem Sub-body in the Stepped-Hull Planing Boat)

  • 강병윤;박충환
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.84-89
    • /
    • 2008
  • It is hard to find experimental data for a model test of small high-speed planning boats. It is difficult to verify the performance seen in a model test for a high-speed boat because the ship-model scale-ratio is very small and the flow velocity of the circulating water channel and the X-carriage speed of the towing tank are restricted. Therefore most hull-form designs for high-speed small boats depend on the sea-trial test result for similar boats or evaluation through numerical calculations. This study investigated the anti-rolling effect of the stern sub-body in a 50-knot doss planning boat. To carry out this work, new model test procedures were set up in the actual sea. Using this method, the anti-rolling effect of the stern sub-body was investigated. A stern sub-body attached to a planning boat was proved to be effective in reducing the roll and pitch angle.