• Title/Summary/Keyword: Anti-Kidney Vortex

Search Result 3, Processing Time 0.021 seconds

Experimental Study on the Film Cooling Effectiveness on a Flat Plate with Anti-Vortex Holes

  • Park, Soon Sang;Park, Jung Shin;Kwak, Jae Su
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, the effects of the anti-vortex hole angle and blowing ratio on the flat plate film cooling effectiveness were experimentally investigated. For the film cooling effectiveness measurement, pressure sensitive paint technique was applied. The experiments were conducted for cylindrical and anti-vortex film cooling holes, and three blowing ratios of 0.25, 0.5, and 1.0 were tested. Two anti-vortex hole angles of 0 and 15 degree with respect to the flow direction were considered. For the cylindrical hole case, the film cooling effectiveness decreased as the blowing ratio increased because of the coolant lift-off. For the angle anti-vortex hole cases, however, higher blowing ratio resulted in higher film cooling effectiveness due to the reduced actual blowing ratio and diminished kidney vortex. For all blowing ratio, the angled anti-vortex hole case showed the highest film cooling effectiveness.

A Study on the Film-cooling Characteristics of Gas Turbine Blade with Various Area Ratios and Ejection Angles of the Double Jet Holes (이중분사 홀의 면적비와 분사각 변화에 따른 가스터빈 막냉각 특성 연구)

  • Cho, Moon-Young;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2014
  • The kidney vortex is the important factor adversely influencing film cooling effectiveness. In general, double jet film-cooling hole is designed to overcome the kidney vortex by generating anti-kidney vortices. In this study, the film cooling characteristics and the effectiveness of the double jet film cooling hole were numerically investigated with various area ratios of the first($A_1$) and second($A_2$) cooling hole($A_1/A_2$=0.8, 1.0, 1.25) and lateral ejection angle(${\alpha}$ = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$) as the design parameters. The effects of lateral distance between the first and second row holes are investigated. Numerical study was performed by using ANSYS CFX with the shear stress transport(SST) turbulence model. The film cooling effectiveness and temperature distribution were graphically depicted with various flow and geometrical conditions.

Effect of Secondary Flow Direction on Film Cooling Effectiveness (이차유동의 방향이 막냉각 효율에 미치는 영향)

  • Park, Sehjin;Choi, Seok Min;Sohn, Ho-Seong;Chung, Heeyoon;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.655-663
    • /
    • 2013
  • Several studies of film cooling were accomplished with a secondary flow channel parallel to the main flow. In real turbine blades, however, the direction of the secondary flow channel is generally normal to the main flow. Thus, this study performs a numerical analysis to investigate the effects of the direction of secondary flow on the effectiveness of double-jet film cooling. The blowing ratio is 1 and 2, and the lateral injection angle is $22.5^{\circ}$. The parallel channel case creates a well-developed anti-kidney vortex with a blowing ratio of 1, and the laterally averaged film cooling effectiveness of the parallel channel is enhanced compared to the normal channel. The normal channel shows higher performance with a blowing ratio of 2. Both cases show high film cooling effectiveness. These phenomena can be attributed to a high blowing ratio and flow rate rather than an anti-kidney vortex.