• Title/Summary/Keyword: Anti- inflammation

Search Result 2,807, Processing Time 0.032 seconds

PEP-1-paraoxonase 1 fusion protein prevents cytokine-induced cell destruction and impaired insulin secretion in rat insulinoma cells

  • Lee, Su Jin;Kang, Hyung Kyung;Choi, Yeon Joo;Eum, Won Sik;Park, Jinseu;Choi, Soo Young;Kwon, Hyeok Yil
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.538-543
    • /
    • 2018
  • Pancreatic beta cell destruction and dysfunction induced by cytokines is a major cause of type 1 diabetes. Paraoxonase 1 (PON1), an arylesterase with antioxidant activity, has been shown to play an important role in preventing the development of diabetes in transgenic mice. However, no studies have examined the anti-diabetic effect of PON1 delivered to beta cells using protein transduction. In this study, we expressed the cell-permeable PON1 fused with PEP-1 protein transduction domain (PEP-1-PON1) to investigate whether transduced PEP-1-PON1 protects beta cells against cytokine-induced cytotoxicity. PEP-1-PON1 was effectively delivered to INS-1 cells and prevented cytokine-induced cell destruction in a dose-dependent manner. Transduced PEP-1-PON1 significantly reduced the levels of reactive oxygen species (ROS) and nitric oxide (NO), DNA fragmentation, and expression of inflammatory mediators, endoplasmic reticulum (ER) stress proteins, and apoptosis-related proteins in cytokine-treated cells. Moreover, transduced PEP-1-PON1 restored the decrease in basal and glucose-stimulated insulin secretion induced by cytokines. These data indicate that PEP-1-PON1 protects beta cells from cytokine-induced cytotoxicity by alleviating oxidative/nitrosative stress, ER stress, and inflammation. Thus, PEP-1-mediated PON1 transduction might be an effective method to reduce the extent of destruction and dysfunction of pancreatic beta cells in autoimmune diabetes.

Effect of Activated Protein C (APC) on Apoptosis of Cancer Cells (종양세포의 사멸에 있어서의 activated protein C의 효과)

  • Min, Kyoung-Jin;Bae, Jong-Sup;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.697-701
    • /
    • 2012
  • Activated protein C (APC) has an anticoagulant effect and a non-hemostatic effect such as regulation of cell metastasis and modulation of inflammation. In this study, we investigated whether APC could modulate apoptosis in cancer cells. Tumor necrosis factor (TNF)-${\alpha}$, cyclohexamide, and FAS markedly induced apoptosis in human renal carcinoma Caki cells. When Caki cells were pretreated with APC, the percentage of death receptor-induced apoptosis did not change. Furthermore, we checked the effect of APC on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioma T98G and human breast carcinoma MDA231 cells. APC also had no effect on TRAIL-induced apoptosis in both cell lines. However, pretreatment with APC inhibited combination treatment (kahweol plus TRAIL and kahweol plus melatonin)-induced apoptosis and PARP cleavage in Caki cells. Taken together, our results suggest that APC can modulate anti-cancer therapeutic efficiency.

Ethanol Extract of Oenanthe javanica Modulates Inflammatory Response by Inhibiting NF-${\kappa}B$ Mediated Cyclooxygenase-2 Expression in RAW 264.7 Macrophage

  • Lee, Jeong-Min;Kim, Nam-Joo;Cho, Dong-Hyeok;Chung, Min-Young;Hwang, Kwon-Tack;Kim, Hyun-Ji;Jun, Woo-Jin;Park, Chang-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.303-307
    • /
    • 2006
  • Effect of Oenanthe javanica ethanol extract (OJE) on nuclear factor-${\kappa}B$ (NF-${\kappa}B$)-mediated inflammatory reaction in RAW 264.7 macrophage cells was investigated. The OJE dose-dependently inhibited secretions of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and prostaglandins $E_2\;(PGE_2)$ from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and blocked LPS-induced expression of cyclooxygenase-2. To clarify mechanistic basis for its inhibitions of NF-${\kappa}B$ and activator protein-1 (AP-1) activations, effects of OJE on activations of NF-${\kappa}B$ and AP-1 genes by luciferase reporter activity were examined. The LPS-stimulated activations of NF-${\kappa}B$ and AP-1 were significantly blocked by 400 and $600\;{\mu$}g/mL of OJE, implicating that OJE might regulate gene expression through more than one signaling pathway. Cytosolic degradation of I-${\kappa}B{\alpha}$ was inhibited by OJE dose-dependently, indicating that the nuclear translocation of p65 was inhibited by OJE. These findings suggest that the inhibition of LPS-stimulated COX-2 expression by OJE is due to its inhibition of NF-${\kappa}B$ activation by blocking I-${\kappa}B{\alpha}$ degradation, which may be mechanistic basis of anti-inflammatory effects of OJE.

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.

NF-κB Activation and PPAR Transactivational Effects of a New Aliphatic Acid Amide from Pericarps of Zanthoxylum piperitum

  • Yang, Seo Young;Tai, Bui Huu;Song, Seok Bean;Li, Wei;Yan, Xi Tao;Sun, Ya Nan;Nguyen, Phuong Thao;Kim, Young Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2361-2366
    • /
    • 2014
  • A new aliphatic acid amide, ZP-amide F (1), and eight known compounds, including bungeanumamide A (2), tumuramide C (3), ZP-amide A (4), ZP-amide B (5), ZP-amide D (6), hyperin (7), quercitrin (8), and (-)-sesamin (9), were isolated from pericarps of Zanthoxylum piperitum. The effects of these compounds on $TNF{\alpha}$-induced NF-${\kappa}B$ activation and transactivational activity of PPARs, including $PPAR{\alpha}$, $PPAR{\beta}({\delta})$ and $PPAR{\gamma}$ subtypes, were evaluated. Compounds 7 and 9 exhibited potent inhibitory effects on $TNF{\alpha}$-induced NF-${\kappa}B$ activation with $IC_{50}$ values of 5.50 and $8.10{\mu}M$, respectively. Aliphatic acid amide compounds 3, 4 and 6 displayed enhanced effects on PPAR transactivational activity with $EC_{50}$ values of 47.12, 19.13 and $12.02{\mu}M$, respectively. Among them, compound 4 demonstrated an increase in $PPAR{\alpha}$ transactivational activity, compound 3 showed a moderate increase on all PPAR subtypes, whereas compound 6 displayed weak PPAR transactivational activity.

Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthasis in Murine Macrophage RAW264.7 (RAW 264.7 Cell에서 세이지에 의한 염증성 Cytokine 및 iNOS억제 효과)

  • 현은아;이혜자;윤원종;박수영;강희경;김세재;유은숙
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.159-164
    • /
    • 2004
  • Primary pro-inflammatory cytokines are a trio: tumor necrosis- $\alpha$ (TNF-$\alpha$), interleukine-$\beta$ (IL-$\beta$), and interleukine-6 (IL-6). These cytokines initiate and regulate the acute-phase inflammatory response during infection, trauma, or stress and appear to play an important role in the immune process. Nitric oxide (NO) is a multi-functional mediator, which plays an important role in regulating various biological functions in vivo. NO production by inducible nitric oxide synthase (iNOS) in macrophages is essential for the defense mechanisms against microorganisms and tumor cells. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammatory and auto-immune disease. Solvent fractions of sage ( Salvia officinalis L.), which is cultivated in Jeju-Do, was assayed for their effects on TNF-$\alpha$ and IL-6 production in LPS-stimulated RAW 264.7 macrophages. Hexane and ethylacetate (EtOAc) fraction of sage inhibited the protein and mRNA expression of TNF-$\alpha$ and IL-6 in LPS stimulated RAW 264.7 cells at the concentration of 100 $\mu\textrm{g}$/$m\ell$. Also, incubation of RAW 264.7 cells with the fraction of hexane or EtOAc (50 $\mu\textrm{g}$/$m\ell$) inhibited the LPS induced nitrite accumulation and the LPS/IFN-${\gamma}$ induced iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. Above results suggest that extract of sage may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines (TNF-$\alpha$, IL-1$\beta$, IL-6), iNOS and NO.

Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

  • Ren, Kaixi;Jin, Chao;Ma, Pengfei;Ren, Qinyou;Jia, Zhansheng;Zhu, Daocheng
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Background: Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods: To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10-100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with $CD11b^+$, $iNOS^+$/interleukin-12/tumor necrosis factor-${\alpha}$ labeling. For the in vitro study, GSRd ($10-100{\mu}g/mL$) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results: In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin-eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-${\alpha}$. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion: These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization.

Korean Red Ginseng Saponin Fraction Downregulates Proinflammatory Mediators in LPS Stimulated RAW264.7 Cells and Protects Mice against Endotoxic Shock

  • Yayeh, Taddessee;Jung, Kun-Ho;Jeong, Hye-Yoon;Park, Ji-Hoon;Song, Yong-Bum;Kwak, Yi-Seong;Kang, Heun-Soo;Cho, Jae-Youl;Oh, Jae-Wook;Kim, Sang-Keun;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • Korean red ginseng has shown therapeutic effects for a number of disease conditions. However, little is known about the anti-inflammatory effect of Korean red ginseng saponin fraction (RGSF) in vitro and in vivo. Therefore, in this study, we showed that RGSF containing 20(S)-protopanaxadiol type saponins inhibited nitric oxide production and attenuated the release of tumor necrotic factor (TNF)-${\alpha}$, interleukin (IL)-6, granulocyte monocyte colony stimulating factor (GMCSF), and macrophage chemo-attractant protein-1 in lipopolysaccharide (LPS) stimulated murine macrophage RAW264.7 cells. Moreover, RGSF down-regulated the mRNA expressions of inducible nitric oxide synthase, cyclooxyginase-2, IL-$1{\beta}$, TNF-${\alpha}$, GMCSF, and IL-6. Furthermore, RGSF reduced the level of TNF-${\alpha}$ in the serum and protected mice against LPS mediated endotoxic shock. In conclusion, these results indicated that ginsenosides from RGSF and their metabolites could be potential sources of therapeutic agents against inflammation.

The Experimental Stydy on the Anti-Allergic Rhinitis Effects of the Sochungryong-tang (小靑龍湯이 알레르기 鼻炎에 미치는 效果에 대한 實驗的 硏究)

  • Park Ju-ho;Sim Sung-yong;Um Yu-sik;Nam Hae-jeong;Kim Kyung-jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.1
    • /
    • pp.55-65
    • /
    • 2004
  • Allergic rhinitis is an inflammation of the nasal mucosa which is triggered by an allergic reaction. When exposed to certain allergens, the IgE covered mast cells degranulate releasing inflammatory mediators and cytokines which results in a local inflammatory reaction. In many recent studies, molecular biological methods have been used to investigate the role of cytokines in pathogenesis and new therapeutic targets of allergic rhinitis. This experimental study was done to research effects of Sochungryong-tang. We have studied effect of mice on OVA-induced production of IL-4, IL-5, IFN-${\gamma}$ by murine splenocytes and effect of OVA-induced total IgE and OVA-specific IgE. The results were as follows; 1. In IL-4 study, Sochungryong-tang treated group was proved significant inhibitory effect(p〈0.005). 2. In IL-5 study, Sochungryong-tang treated group was proved significant inhibitory effect(p〈0.05). 3. In JFN-${\gamma}$ study, Sochungryong-tang treated group was proved significant inhibitory effect(p〈0.000001). 4. In Total IgE, Sochungryong-tang treated group was proved significant inhibitory effect(p〈0.000001). 5. In OVA-specific IgE, Sochungryong-tang treated group didn't showed significant inhibitory effect. Depending upon above results, it is considered that Sochungryong-tang has the inhibitory effect on the allergic rhinitis of mice and suggested that it could be used in relieving patients of the symptoms which are caused by allergic rhinitis.

  • PDF

Water-extract of Helianthus annuus Seed Exhibits Potent Anti-asthma Activity In Vitro and In Vivo (해바라기씨 추출물의 천식 완화 효과)

  • Heo Jin-Chul;Park Ja-Young;Woo Sang-Uk;Chung Shin-Kyo;Jeong Kyu-Shick;Lee Jin-Man;Ma Jin-Yeol;Lee Sang-Han
    • Food Science and Preservation
    • /
    • v.13 no.4
    • /
    • pp.495-500
    • /
    • 2006
  • In order to investigate whether antioxidant biomaterials inhibits IL-4 and/or IL-13 expression in vitro and in vivo, we carried out antioxidant assays by enzyme or cell-based assays with Helianthus annuus extract. Antioxidant assays include DPPH, FRAP, hydroxyl radical assays. Helianthus annuus extract exhibited SOD scavenging activity, and had different patterns by each solvent extracted reaction. DW extract inhibited oxidative stress by $H_2O_2$ that induced apoptosis. We measured $CD4^+$ cell and IL-/13 cytokine expression in a classical mouse animal model. The result show that Helianthus annuus extract showed strung inhibition of immune response in the lung. These result suggest that Helianthus annuus extract can reduce inflammation induced by n mouse asthma model.