• Title/Summary/Keyword: Anti oxidative activity

Search Result 946, Processing Time 0.033 seconds

Highly-sensitive Detection of Salvianolic Acid B using Alumina Microfibers-modified Electrode

  • Sun, Dong;Zheng, Xiaoyong;Xie, Xiafeng;Yang, Xiaofeng;Zhang, Huajie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3357-3361
    • /
    • 2013
  • Alumina microfibers with porous structures were prepared through hydrothermal reaction, and then used to modify the surface of carbon paste electrode (CPE). After modification with alumina microfibers, the electrochemical activity of CPE was found to be greatly improved. On the surface of alumina microfibers-modified CPE, the oxidation peak current of salvianolic acid B, a main bioactive compound in Danshen with anti-oxidative and anti-inflammatory effects, was remarkably increased compared with that on the bare CPE surface. The influences of pH value, amount of alumina microfibers and accumulation time were studied. Based on the strong signal amplification effects of alumina microfibers, a novel electrochemical method was developed for the detection of salvianolic acid B. The linear range was from 5 ${\mu}gL^{-1}$ to 0.3 mg $L^{-1}$, and the detection limit was 2 ${\mu}gL^{-1}$ (2.78 nM) after 1-min accumulation. The new method was successfully used to detect salvianolic acid B in ShuangDan oral liquid samples, and the recovery was over the range from 97.4% to 102.9%.

Ginseng polysaccharides: A potential neuroprotective agent

  • Wang, Na;Wang, Xianlei;He, Mengjiao;Zheng, Wenxiu;Qi, Dongmei;Zhang, Yongqing;Han, Chun-chao
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.211-217
    • /
    • 2021
  • The treatments of nervous system diseases (NSDs) have long been difficult issues for researchers because of their complexity of pathogenesis. With the advent of aging society, searching for effective treatments of NSDs has become a hot topic. Ginseng polysaccharides (GP), as the main biologically active substance in ginseng, has various biological properties in immune-regulation, anti-oxidant, anti-inflammation and etc. Considering the association between the effects of GP and the pathogenesis of neurological disorders, many related experiments have been conducted in recent years. In this paper, we reviewed previous studies about the effects and mechanisms of GP on diseases related to nervous system. We found GP play an ameliorative role on NSDs through the regulation of immune system, inflammatory response, oxidative damage and signaling pathway. Structure-activity relationship was also discussed and summarized. In addition, we provided new insights into GP as promising neuroprotective agent for its further development and utilization.

Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells (MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진)

  • Nara Jeong;Yung Hyun Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

The Preparation of Mask-pack Sheet Blended with Styela clava tunics and Natural Polymer (미더덕껍질과 천연고분자 혼합물을 이용한 마스크팩시트의 제조방법)

  • Yun, Woobin;Lee, Yechan;Kim, Dasom;Kim, Jieun;Sung, Jieun;Lee, Hyunah;Son, Hongju;Hwang, Daeyoun;Jung, Youngjin
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • Ultraviolet radiation have much influenced with a deep wrinkles, roughness, laxity of skin damage and pigmentation through oxidative stress and oxidative photo-damage. This study investigates the functional properties of hydrogel facial mask sheets made from agar, Styela clava tunics and Broussonetia papyrifera tunics. The skin of S. clava is covered with a hard cellulose containing glycoprotein, glycosaminoglycan and chondroitin sulfate. B. papyrifera is better known as Paper mulberry. It contains kazinol which serves as a tyrosinase inhibitor and skin whitening agent. The tensile strength of facial mask sheet was measured by universal testing machine, and the water absorption and moisture permeability of facial mask sheet were measured by dryer. Additionally, the DPPH assay and MTT assay were conducted for anti-oxidative activity and cytotoxicity of facial mask sheet. The whitening effect of the facial mask sheet was measured by tyrosinase inhibitor assay. These tests showed that the three ingredients are suitable cosmetic materials. The results reveal that they produce a high quality hydrogel facial mask sheet when the membrane contains 1%(W/V) of agar, 0.1%(W/V) of B. papyrifera tunics and 0.05%(W/V) of S. clava tunics.

Protective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death (등대(燈臺)풀 유래 Furosin의 glutamate에 의한 HT22 세포 사멸 억제 효과)

  • Baek, Ji Yun;Song, Ji Hoon;Choi, Sung Youl
    • The Journal of Korean Medicine
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2018
  • Objectives: In the brain, glutamate is the most important excitable neurotransmitter in physiological and pathological conditions. However, the high level of glutamate induces neuronal cell death due to exitotoxicity and oxidative stress. The present study investigated to evaluate a possible neuroprotective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death. Methods: Furosin was isolated from methanol extract of Euphorbia helioscopia and examined whether it protects glutamate-induced neuronal cell death. The cell viability was determined using Ez-Cytox assay. Anti-oxidative effect of furosin was determined by DPPH scavenging activities, and the levels of intracellular reactive oxygen species (ROS) were determined by the fluorescent intensity after staining the cells with $H_2DCFDA$. To evaluate apoptotic cell death, we performed nuclear staining and image-based cytometeric analysis. Results: The cell viability was significantly increased by treatement with furosin compared with the treatment with glutamate. Furosin showed a strong DPPH radical scavenging activity ($EC50=1.83{\mu}M$) and prevented the accumulation of intra cellular ROS. Finally, the presence of 50 and $100{\mu}M$ furosin significantly the percentage of apoptotic cells compared with glutamate treatment. Conclusion: The present study found that furosin is a potent neuroprotectant against glutamate-induced oxidative stress through inhibition of apoptotic cell death induced by glutamate. Therefore, the present study suggests that furosin as a bioactive compound of E. helioscopia can be a useful source to develop a drug for the treatment of neurodegenerative diseases and acute brain injuries.

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Manna, Prasenjit;Sinha, Mahua;Sil, Parames C.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.382-395
    • /
    • 2007
  • The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

Processed Panax ginseng, Sun Ginseng, Decreases Oxidative Damage Induced by tert-butyl Hydroperoxide via Regulation of Antioxidant Enzyme and Anti-apoptotic Molecules in HepG2 Cells

  • Lee, Hye-Jin;Kim, Jin-Hee;Lee, Seo-Young;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.248-255
    • /
    • 2012
  • Potential antioxidant effect of processed ginseng (sun ginseng, SG) on oxidative stress generated by tert-butyl hydroperoxide (t-BHP) was investigated in HepG2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase (LDH) leakage test demonstrated that SG dose-dependently prevents a loss of cell viability against t-BHP-induced oxidative stress. Also, SG treatment dose-dependently relieved the increment of activities of hepatic enzymes, such as aspartate aminotrasferase and alanine aminotransferase, and lipid peroxidation mediated by t-BHP treatment in HepG2 cells. SG increased the gene expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. However, high dose of SG treatment caused decrease in mRNA level of glutathione peroxidase as compared to low dosage of SG-treated cells. The gene expression of glutathione reductase was found to be slightly increased by SG treatment. In addition, SG extract attributed its hepaprotective effect by inducing the mRNA level of bcl-2 and bcl-xL but reducing that of bax. But, the gene expression of bad showed no significant change in SG-treated HepG2 cells. These findings suggest that SG has hepatoprotective effect by showing reduction of LDH release, activities of hepatic enzymes and lipid peroxidation and regulating the gene expression of antioxidant enzymes and apoptosis-related molecules against oxdative stress caused by t-BHP in HepG2 cells.

Anti-Inflammatory Effects of Streamed Platycodon grandiflorum against UVB Radiation-Induced Oxidative Stress in Human Primary Dermal Fibroblast

  • Lee, Ji Yeon;Park, Jeong-Yong;Lee, Dae Young;Kim, Hyung Don;Kim, Geum-Soog;Lee, Seung Eun;Seo, Kyung Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.495-501
    • /
    • 2018
  • Ultraviolet B (UVB) exposure is a risk factor for skin damage resulting in oxidative stress, inflammation, and cell death. The purpose of this study was to investigate the physicochemical properties of Platycodon grandiflorum (PG) to improve its biological activities using a three-step steaming process. We investigated the protective effects of PG and steamed PG extracts on human dermal fibroblasts (HDFs) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the PG extracts was evaluated by measuring the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging activity. ABTS and DPPH were shown by the 0, 30, and 70% ethanol extracts of 2S-PG and 3S-PG ($IC_{50}$, 28~45 and $27{\sim}30{\mu}g/mL$, respectively). Treatment of UVB-irradiated cells with steamed PG ($25{\sim}400{\mu}g/mL$) did not affect their viability. The streamed PG extract suppressed UVB-induced generation of reactive oxygen species (ROS). In addition, streamed PG extract reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in UVB-irradiated HDF, regulating nuclear factor $(NF)-{\kappa}B$ expression. These findings suggest that steamed PG extract may be potentially effective against inflammation associated with UVB-induced oxidation stress.

Effect of Ecklonia cava on the Blood Glucose, Lipids and Renal Oxidative Stress in Diabetic Rats (당뇨쥐에서 감태의 혈당, 혈청지질 개선효과 및 신장의 항산화효과)

  • Kim, Eun;Kim, Min-Sook;Kim, Se-Youn;Kim, Hyeon-A
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.6
    • /
    • pp.812-819
    • /
    • 2008
  • In this study, we assessed the effects of dietary supplementation with Ecklonia cava on blood glucose, lipid metabolism, and renal oxidative stress in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were divided into a normal rat group fed on a control diet and diabetic rats fed on a control diet or supplemented with powder (15% w/w) or water extract of Ecklonia cava (2.5% w/w). Diabetes was induced by a single injection of STZ (60 mg/kg, ip) in citrate buffer. The animals were fed ad libitum with the experimental diet and water for 5 weeks. Dietary supplementation of Ecklonia cava powder and water extract was shown to reduce blood glucose levels in the diabetic rats, and the water extract was more effective than the powder. Dietary supplementation with Ecklonia cava also reduced LDL cholesterol and increased HDL-cholesterol levels in the diabetic rats. Renal glutathione S-transferase activity was increased in the diabetic rats as compared to the normal rats, but reverted to near control values as the result of dietary supplementation with Ecklonia cava. These results show that Eklonia cava exerts an anti-diabetic effect by improving blood glucose concentrations, LDL/HDL-cholesterol ratios, and antioxidative effects on the kidney in diabetic rats.

Effects of Horse Meat Hydrolysate on Oxidative Stress, Proinflammatory Cytokines, and the Ubiquitin-Proteasomal System of C2C12 Cells

  • Hee-Jeong Lee;Dongwook Kim;Kyoungtag Do;Chang-Beom Yang;Seong-Won Jeon;Aera Jang
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.132-145
    • /
    • 2024
  • Sarcopenia, the age-related muscle atrophy, is a serious concern as it is associated with frailty, reduced physical functions, and increased mortality risk. Protein supplementation is essential for preserving muscle mass, and horse meat can be an excellent source of proteins. Since sarcopenia occurs under conditions of oxidative stress, this study aimed to investigate the potential anti-muscle atrophy effect of horse meat hydrolysate using C2C12 cells. A horse meat hydrolysate less than 3 kDa (A4<3kDa) significantly increased the viability of C2C12 myoblasts against H2O2-induced cytotoxicity. Exposure of C2C12 myoblasts to lipopolysaccharide led to an elevation of cellular reactive oxygen species levels and mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α and interleukin 6, and these effects were attenuated by A4<3kDa treatment. Additionally, A4<3kDa activated protein synthesis-related proteins through the protein kinase B/mechanistic target of rapamycin pathway, while decreasing the expression of activity and degradation-related proteins, such as Forkhead box O3, muscle RING finger protein-1, and Atrogin-1 in dexamethasone-treated C2C12 myotubes. Therefore, the natural material A4<3kDa has the potential of protecting against muscle atrophy, while further in vivo study is needed.