• Title/Summary/Keyword: Anti fungal activity

Search Result 124, Processing Time 0.022 seconds

Chemical Composition and Antifungal Activity of Plant Essential Oils against Malassezia furfur (비듬균(Malassezia furfur)에 대한 식물 오일들의 항균활성 및 활성오일의 성분 분석)

  • Lee, Jeong-Hyun;Lee, Jae-Sug
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.315-321
    • /
    • 2010
  • Malassezia furfur is an important causal factor for seborrheic dermatitis. Nowadays, the drugs available to treat this fungal infection are few. Several studies have documented the biological activity of essential oils. However, its antifungal properties are not completely understood, especially its anti-Malassezia activity. The aim of this study were to evaluate the effect of the plant essential oils on the growth of M. furfur using disk diffusion method and analyze by Gas chromatography-mass spectrometry (GC-MS) most active essential oils. In first screening, the 17 plant essential oils have possesses inhibitory activity against M. furfur at 2 mg/mL. Among the plant essential oils, oil of Citrus auranifoli was most active against M. furfur and its activity showed dose dependency. This anti-malassezial activity was high than that of itraconazole at 2 mg/mL. Oil of Citrus auranifolia also was phytochemically examined by GC-MS analysis, its main constituents were identified as limonene, ${\gamma}$-terpinene and terpinolene. It can be concluded that essential oils of Citrus auranifolia may have interesting applications to control fungal-derived diseases.

Comparision of Anti-microbial Oils as Natural Preservatives (천연방부제로서 항균오일의 항균력 비교)

  • Kim, Mi-Jin;Jung, Taek-Kyu;Hong, In-Gi;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.99-103
    • /
    • 2006
  • Natural essential oils showed anti-microbial activity on relatively broad spectrum of bacterial and fungal species. These materials had much more intensive anti-microbial activities than synthetic preservatives on C. albicans, A niger, and P. acnes, especially. In the experimental group, anti-microbial activity was order of tea tree oil (from Melaleuca alternifolia) > methylparaben > phytoncide (from Chamaecyparis obtusa). Also, natural essential oils had anti-oxidative and anti-inflammatory effects. These results suggest that natural essential oils can be useful as good cosmetic ingredients such as natural preservatives and anti-oxidants.

$18{\beta}$-Glycyrrhetinic Acid Induces Protective Anti-Candida albicans Antibody by Its Immunoadjuvant Activity ($18{\beta}$-Glycyrrhetinic Acid의 면역보조제효능에 의한 항 전신성캔디다증 효과)

  • Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.494-499
    • /
    • 2008
  • The role of antibody in the fungal infections is controversial. However, our previous reports showed a certain epitope in Candida albicans cell wall (CACW) induces protective antibody. A major problem is that the epitope isolation requires tremendous time with high cost. This aspect led us to investigate a simple way inducing protective antibodies against C. albicans. In the present study, we determined if $18{\beta}$-glycyrrhetinic acid ($18{\beta}$-GA) from Glabrae Radix (a family of Leguminosae) has immunoadjuvant activity. Data displayed that the $18{\beta}$-GA suppressed proliferations of both T- and Blymphocytes at high concentrations, whereas below 20 ${\mu}M$ concentration the compound supported the proliferations. These observations indicate that $18{\beta}$-GA has immunoregulatory activity. Based on this observation, an immunoadjuvant effect was examined at the low concentration. Results from animal experiments showed that CACW combined with or without $18{\beta}$-GA produced the anti-C. albicans antiserum in mice. Nevertheless, the CACW combined with $18{\beta}$-GA formula only protected mice against disseminated candidiasis (P<0.05). These data implicate that $18{\beta}$-GA has immunoadjuvant activity, which may provoke the CACW antigen to induce protective antibody. Currently, we are investigating possible mechanism of how the $18{\beta}$-GA provokes such protective immunity against the disseminated disease.

HPLC, NMR Based Characterization, Antioxidant and Anticancer Activities of Chemical Constituents from Therapeutically Active Fungal Endophytes

  • Waqas Hussain Shah;Wajiha Khan;Sobia Nisa;Michael H.J. Barfuss;Johann Schinnerl;Markus Bacher;Karin Valant-Vetschera;Ashraf Ali;Hiba-Allah Nafidi;Yousef A. Bin Jardan;John P. Giesy
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1452-1463
    • /
    • 2024
  • Fungi generate different metabolites some of which are intrinsically bioactive and could therefore serve as templates for drug development. In the current study, six endophytic fungi namely Aspergillus flavus, Aspergillus tubigenesis, Aspergillus oryzae, Penicillium oxalicum, Aspergillus niger, and Aspergillus brasiliensis were isolated and identified from the medicinal plant, Silybum marianum. These endophytic fungi were identified through intra transcribed sequence (ITS) gene sequencing. The bioactive potentials of fungal extracts were investigated using several bioassays such as antibacterial activity by well-diffusion, MIC, MBC, anti-biofilm, antioxidant, and haemolysis. The Pseudomonas aeruginosa PAO1 was used to determine the antibiofilm activity. The ethyl acetate extract of Aspergillus flavus showed strong to moderate efficacy against Staphylococcus aureus, Escherichia coli, P. aeruginosa, and Bacillus spizizenii. Aspergillus flavus and Aspergillus brasiliensis exhibited significant antibiofilm activity with IC50 at 4.02 and 3.63 mg/ml, while A. flavus exhibited maximum antioxidant activity of 50.8%. Based on HPLC, LC-MS, and NMR experiments kojic acid (1) and carbamic acid (methylene-4, 1-phenylene) bis-dimethyl ester (2) were identified from A. flavus. Kojic acid exhibited DPPH free radical scavenging activity with an IC50 value of 99.3 ㎍/ml and moderate activity against ovarian teratocarcinoma (CH1), colon carcinoma (SW480), and non-small cell lung cancer (A549) cell lines. These findings suggest that endophytic fungi are able to produce promising bioactive compounds which deserve further investigation.

IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans

  • Tran, Vuvi G.;Cho, Hong R.;Kwon, Byungsuk
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms.

Synthesis and Biological Evaluation as a Potential Allylamine Type Antimycotics (알릴아민 항진균제의 합성과 생물학적 평가)

  • 정병호;조원제;천승훈;정순영;유진철
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.293-299
    • /
    • 2003
  • Structure-activity relationship studies of allylamine type of antimycotics were carried out to evaluate the effect of naphthyl and methyl portion of naftifine. Compounds with 4-fluorophenyl(2a-5a), 2-fluorophenyl(2b-5b), 2,4-dichlorophenyl(2c-5c), 2,6-dichlorophenyl(2d-5d), 4-nitrophenyl(2e-5e), and 2,3-dihydro-benzo[1,4]dioxan-6-yl( 2f-5f) instead of naphthyl group with hydrogen(3a-3f), methyl(4a-4f), and ethyl(5a-5f) in the place of methyl in naftifine were synthesized and tested their in vitro anti-fungal activity against five different fungi. Eight compounds(3a, 5a, 3c, 4c, 4d, 5d, 5e, and 4f) showed significant antifungal activity against T. mentagrophytes. (E)-N-Ethyl-(3-phenyl-2-propenyl)-4-nitro-benzenemethaneamine(5e) displayed moderate antifungal activity against all five different fungi.

Ethanolic Extract of Pancake Mixture Powder Supplemented with Helianthus tuberosus Enhances Antidiabetic Effects via Inhibiting Inflammatory Mediator NO Production

  • Lee, Kyoung-Dong;Sun, Hyeon-Jin;Lee, Mina;Chun, Jiyeon;Shin, Tai-Sun;Choi, Kap Seong;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.228-234
    • /
    • 2022
  • Helianthus tuberosus is perennial plant as Compositae family and is shown various physiological activities such as analgesic, antipyretic, anti-inflammatory, anti-fungal, anti-spasmodic, aperient, cholagogue, diuretic, spermatogenic, stomachic, and tonic effects. In this study, we investigated the antidiabetic and anti-inflammatory effects of pancake mixture powder (PM) supplemented with H. tuberosus (PMH) in rat skeletal muscle L6 cells and murine macrophage RAW 264.7 cells, respectively. PM and PMH inhibited in vitro α-glucosidase activity. Glucose consumption was increased by PM and PMH without cytotoxicity in rat myoblast L6 cells. Western blot analysis revealed that PM and PMH down-regulated glycogen synthase kinase (GSK)-3β activation in L6 cells. PM and PMH inhibited inflammatory mediator, nitric oxide (NO) production without cytotoxicity in LPS-induced RAW 264.7 cells. The anti-diabetic and anti-inflammatory effects of PMH was more stronger than those of PM. Anti-diabetic and anti-inflammatory effects of PMH would be due to functional characteristics of the supplemented H. tuberosus and the presence of garlic and onion used as ingredients of PM. Taken together, our results that addition of functional materials such as H. tuberosus in product has synergic effects and PMH is potential candidate for treatment of diabetes through inhibiting inflammation.

Antimicrobial and Cytotoxic Activity of Endophytic Fungi from Lagopsis supina

  • Dekui Zhang;Weijian Sun;Wenjie Xu;Changbo Ji;Yang Zhou;Jingyi Sun;Yutong Tian;Yanling Li;Fengchun Zhao;Yuan Tian
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.543-551
    • /
    • 2023
  • In this study, five endophytic fungi belonging to the Aspergillus and Alternaria genera were isolated from Lagopsis supina. The antimicrobial activity of all fungal fermented extracts against Staphylococcus and Fusarium graminearum was tested using the cup-plate method. Among them, Aspergillus ochraceus XZC-1 showed the best activity and was subsequently selected for large-scale fermentation and bioactivity-directed separation of the secondary metabolites. Four compounds, including 2-methoxy-6-methyl-1,4-benzoquinone (1), 3,5-dihydroxytoluene (2), oleic acid (3), and penicillic acid (4) were discovered. Here, compounds 1 and 4 displayed anti-fungal activity against F. graminearum, F. oxysporum, F. moniliforme, F. stratum, Botrytis cinerea, Magnaporthe oryzae, and Verticillium dahlia with diverse MIC values (128-512 ㎍/ml), which were close to that of the positive control antifungal, actidione (64-128 ㎍/ml). Additionally, compounds 1 and 4 also exhibited moderate antibacterial activity against S. aureus, Listeria monocytogenes, Escherichia coli, and Salmonella enterica, with low MIC values (8-64 ㎍/ml). Moreover, compounds 1 and 4 displayed selective cytotoxicity against cancer cell lines as compared with the normal fibroblast cells. Therefore, this study proposes that the endophytic fungi from L. supina can potentially produce bioactive molecules to be used as lead compounds in drugs or agricultural antibiotics.

Analysis of the Inhibitory Effect of two Bacterial Strains on Metarhizium anisopliae Induced Fatality Rates in Protaetia Brevitarsis

  • Kwak, Kyu-Won;Nam, Sung-Hee;Park, Kwan-Ho;Lee, Heuisam;Han, Myung-Sae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • Bacterial species, Bacillus amyloliquefaciens and Lactobacillus species (L. sp.5-1), are known to inhibit the growth of pathogenic bacteria and fungi. Metarhizium anisopliae is a pathogenic fungal species which causes fatal damage to P. brevitarsis populations. Therefore, we investigated the inhibitory effect of B. amyloliquefaciens and L. sp. 5-1 on M. anisopliae induced fatality rates in P. brevitarsis. Samples of M. anisopliae-infected sawdust were treated with strain B. amyloliquefaciens KACC10116, strain L. sp. 5-1 KACC19351, and a combination of the two. P. brevitarsis were fed treated sawdust samples, and their subsequent fatality rate was monitored. The fatality rate fell below 1.5% after 10 days and decreased by approximately 40% after 15 days. On average, the fatality rate decreased by 20%, compared to the control. The difference in the decrease in fatality rate between B. amyloliquefaciens treatment and L. sp. 5-1 treatment was not significant. Results indicate that both strains exhibit high anti-fungal activity, which may be useful in environmental purification efforts. These strains may be used for effective prevention of fungal infection in P. brevitarsis.

Rhizobacteria-mediated Induced Systemic Resistance in Cucumber Plants against Anthracnose Disease Caused by Colletotrichum orbiculare

  • Jeun, Yong-Chull;Lee, Yun-Jeong;Bae, Yeoung-Seuk
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.172-176
    • /
    • 2004
  • Bacterial isolates TRL2-3 and TRK2-2 showing anti-fungal activity in vitro test against some plant pathogens were identified as Pseudomonas putida and Micrococcus luteus, respectively. Pre-treatment with both bacterial isolates at the concentration 1.0$\times$ $10^7$ and $10^6$cfu/ml in the rhizosphere could trigger induced systemic resistance in the aerial part of cucumber plants against anthracnose caused by Colletotrichum orbiculare. However, the pre-treatment with the higher concentration at 1.0 $\times$ $10^8$ cfu/ml of both isolates could not induce resistance after challenge inoculation with C. orbiculare. As a positive control, the treatment with DL-3 amino butyric acid caused a remarkable reduction of disease severity whereas the lesions on the leaves of untreated plants developed apparently after the fungal inoculation. From these results, it was recomended that disease control using both bacterial isolates inducing systemic resistance in the field where chemical application is forbid.