• Title/Summary/Keyword: Anti aging

Search Result 1,092, Processing Time 0.025 seconds

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

Antioxidant Activities and Anti-aging Effects of Orostachys japonicus A. Berger Extracts (와송 추출물의 항산화 활성 및 항노화 효과)

  • Jung, Da-Jung;Choe, Tae-Boo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.361-373
    • /
    • 2016
  • This study tested the antioxidant activities and anti-aging effects of an extract of Orostachys japonicus, a herb used as a folk remedy for cancer for a long time. To assess the antioxidant activities of the Orostachys japonicus extract (OJE), the total polyphenol content was confirmed to have a high caffeic acid equivalent weight of 12 g by dry weight of 100g OJE and the total flavonoid content was confirmed that the quercetin equivalent of 1.7 g by dry weight of 100g OJE. DPPH free radical scavenging activity was confirmed a high scavenging activity of 79.7% at a concentration of 1%. To confirm the anti-aging effect of OJE, MMP-1 expression was decreased in $25{\mu}L/mL$ and $50{\mu}L/mL$ similar to control. In a clinical experiment, a group of subjects who used a cosmetic product containing OJE showed a significant increase in the amount of skin moisture from the forehead, left cheek, and chin. The experimental group showed a significant increase in the amount of skin sebum from the chin and maintaining pH balance of normal skin, As a result, the OJE demonstrates the efficacy of natural cosmetic material as antioxidant and anti-aging.

Protective Effects of Ethanol Extract Mixtures of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus against Oxidative Stress-induced Damage in C2C12 Murine Myoblasts (C2C12 근아세포의 산화적 손상에 대한 고삼, 감초 및 백선피 복합 추출물의 보호효과)

  • Choi, Eun Ok;Hwang-Bo, Hyun;Kim, Min Young;Son, Da Hee;Jeong, Jin Woo;Park, Cheol;Hong, Su Hyun;Kim, Min Ju;Lee, Ji Young;Shin, Su Jin;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.179-191
    • /
    • 2017
  • Objectives : Increased oxidative stress by reactive oxygen species (ROS) has been suggested as a major cause of muscle fatigue. Although several studies have demonstrated the various biological properties of Sophora flavescens Aiton, Glycyrrhiza uralensis Fischer and Dictamnus dasycarpus Turcz, but the antioxidative potentials have not been clearly demonstrated. The present study was designed to investigate the protective effects of their water and ethanol extract mixtures (medicinal herbal mixtures, MHMIXs) on hydrogen peroxide ($H_2O_2$)-induced cell damage and apoptosis in C2C12 myoblasts. Methods : Cytotoxicity was assessed by an MTT assay. Quantitative evaluation of apoptosis induction and ROS production was evaluated by flow cytometry analysis. Expression levels of apoptosis regulatory and DNA-damage proteins were detected by Western blotting. Result : The inhibition of $H_2O_2$-induced cell proliferation was effectively blocked in extracts of 3: 1: 1 (EMHMIXs-1) or 2: 2: 1 (EMHMIXs-2) of S. flavescens, G. uralensis and D. dasycarpus Turcz, ethanol extracts from various complex extracts in C2C12 myoblasts. EMHMIXs-1 and EMHMIXs-2 also effectively attenuated $H_2O_2$-induced C2C12 cell apoptosis, which was associated with the restoration of the upregulation of Bad and death receptor 4, and downregulation of XIAP and cIAP-1 induced by $H_2O_2$. In addition, these herbal mixtures significantly blocked the $H_2O_2$-induced ROS generation and phosphorylation of $p-{\gamma}H2A.X$, which suggests that they can prevent $H_2O_2$-induced cellular DNA damage. Conclusions : The results suggest that EMHMIXs-1 and EMHMIXs-2 could block the DAN damage and apoptosis of C2C12 myoblasts by oxidative stress through blocking ROS generation.

Antioxidation and Inhibition of Matrix Metalloproteinase in UV-irradiated Human Dermal Fibroblast by Selaginella tamariscina (자외선이 조사된 사람 피부 섬유아세포에서 권백의 항산화와 MMP 발현에 미치는 영향에 대한 연구)

  • Sim, Gwan-Sub;Kim, Jin-Hwa;Kim, Jin-Hui;Lee, Bum-Chun;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.75-79
    • /
    • 2006
  • In this study. we evaluated anti-aging activity of medical plants that protect the skin cell damage induced by UV irradiation. We have investigated diverse biological activities of Selaginella tamariscina as an anti-aging ingredient of cosmetics. S. tamariscina was found to show scavenging activities of radicals and reactive oxygen species (ROS) with the $IC_{50}$ values of $65.1{\mu}g/mL$ against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and $40.9 {\mu}g/mL$ against superoxide radicals in the xanthine/xanthine oxidase system, respectively. For testing intracellular ROS scavenging activity, the cultured human dermal fibroblasts were analyzed by increase in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20 mJ/cm^2$ after treatment of S. tamariscina. UVA-induced MMP-1 protein and mRNA expression in human dermal fibroblasts were reduced in a dose-dependent manner by S. tamariscina. Moreover, S. tamariscina inhibited MMP-2 (gelatinase) activity in UVA-irradiated human dermal fibroblasts assayed by zymography and semi-quantitative RT-PCR. Taken together, these results suggest that S. tamariscina may act as an anti-aging agent by Increasing collagen and preventing the skin cell damage induced by UV irradiation, and imply that S. tamariscina nay be useful as a new ingredient for anti-aging cosmetics.

Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Jung, Myeong Ho;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.26-32
    • /
    • 2015
  • Objectives: Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). Methods: To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying concentrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. Results: Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at $70{\mu}g/mL$, 15.94% at $140{\mu}g/mL$, 26.56% at $210{\mu}g/mL$ and 38.08% at $280{\mu}g/mL$). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. Conclusion: These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells.

Facilitation of cisplatin-induced acute kidney injury by high salt intake through increased inflammatory response (염분 섭취에 의한 시스플라틴 유도 급성 신장 손상의 촉진과 염증 반응과의 연관성)

  • Ji, Seon Yeong;Hwangbo, Hyun;Kim, Min Yeong;Kim, Da Hye;Park, Beom Su;Park, Joung-Hyun;Lee, Bae-Jin;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • A high salt diet contributes to kidney damage by causing hypoxia and oxidative stress. Recently, an increase in dietary salt has been reported to induce an inflammatory phenotype in immune cells, further contributing to kidney damage. However, studies on the exact mechanism and role of a high salt diet on the inflammatory response in the kidneys are still insufficient. In this study, a cisplatin-induced acute kidney injury model using C57BL/6 mice was used to analyze the effect of salt intake on kidney injury. Results showed that high salt administration aggravated kidney edema in mice induced by treatment with cisplatin. Moreover, the indicators of kidney and liver function impairment were significantly increased in the group cotreated with high salt compared with that treated with cisplatin alone. Furthermore, the exacerbation of kidney damage by high salt administration was also associated with a decrease in the number of cells in the immune regulatory system. Additionally, high salt administration further decreased renal perfusion functions along with increased cisplatin-induced damage to proximal tubules. This was accompanied by increased expression of T cell immunoglobulin, mucin domain 1 (a biomarker of kidney injury), and Bax (a pro-apoptotic factor). Moreover, cisplatin-induced expression of proinflammatory mediators and cytokines, including cyclooxygenase-2 and tumor necrosis factor-α in kidney tissue, was further increased by high salt intake. Therefore, these results indicate that the kidney's inflammatory response by high salt treatment can further promote kidney damage caused by various pathological factors.

Development of Sustainable Anti-aging Products Using Aquaponics Technology (아쿠아포닉스 기술을 이용한 친환경 항노화 제품 개발)

  • Kim, You Ah;Jeon, Tae Byeong;Jang, Wookju;Park, Byoung Jun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.307-317
    • /
    • 2019
  • To develop sustainable new natural anti-aging ingredients from Korean native plants, we investigated the cultivation potential of Nymphoides indica using the eco-friendly aquaponics system, and tested the anti-aging effects from N. indica extracts. N. indica could be grown in aquaponics system using floating leaved deep water culture method, and propagated through rhizome propagation. It was confirmed that the nitrate ($80{\mu}g/mL$), potassium ($63.5{\mu}g/mL$) and water temperature ($25^{\circ}C$) greatly affected the cultivation of the N. indica. In addition, synergistic effects were found when two major components (3,7-di-O-methylquercetin-4'-O-${\beta}$-glucoside & sweroside) were present at more than about $5{\mu}g/mL$. The extract had a significant effect on the recovery of skin cells damaged by environmental pollutant such as $benzo[{\alpha}]pyrene$, ammonium nitrate, formaldehyde. It also suppressed $PGE_2$, $TNF-{\alpha}$ and COX-2, and inhibited the production of MMP-1. Taken together, the results suggested that the standardized extracts of N. indica cultivated in the aquaponics has considerable potential as a new cosmetics ingredient with an anti-aging effect.

Exploration of Beneficial Herbal Medicines to Attenuate Particulate Matter-induced Cellular Injury in Human Corneal Epithelial Cells (인간 각막상피세포에서 미세먼지로 인한 세포 손상을 완화할 수 있는 유익한 한약재의 탐색)

  • Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Park, Sung-Ho;Kim, Mi-Young;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.647-658
    • /
    • 2022
  • Particulate matter (PM) is known to be involved in the onset and progression of various diseases by promoting oxidative and inflammatory reactions as air pollutants containing various small particles that are harmful. In this study, the protective efficacy of herbal medicines was evaluated in human corneal epithelial cells (hCECs) to select natural products that can protect the eye, the primary organ directly exposed to external pollutants from PM. As a result, five candid ate herbal medicines [Cheonmundong, Asparagus Rhizome; Seokchangpo, Aciru Gramineri Rhizoma; Hwangryeon, Coptidis Rhizoma; Gamgug, Chrysanthemi Indici Flos; and Geumjanhwa (Marigold flower petals)] which showed inhibitory efficacy on PM2.5-induced cytotoxicity, were selected from among 12 candidate herbal medicines. To evaluate the antioxidant activity of these candidate substances, the reactive oxygen species (ROS) scavenging ability was investigated, and it was found that the extracts of Seokchangpo, Cheonmundong and Hwangryeon showed a significant inhibitory effect on PM2.5-induced ROS production, which was correlated with the preservation of mitochondrial activity. In addition, it was confirmed that they could block DNA damage caused by PM2.5 through analysis of 8-hydroxy-2'-deoxyguanosine generation and phosphorylated-H2A histone family member X (γ- H2AX) expression. Furthermore, the increase in inflammasome activity and inflammatory response in PM2.5-treated hCECs was also canceled in the presence of these extracts. Although additional studies are needed, the results of this study will be used as primary data to find novel natural compounds that protect hCECs from PM.

Analysis of Chemical Components for Aerial and Underground Parts of Wild Ginseng and Evaluation of Skin Anti-aging Efficacy (야생 산삼 지상부 및 지하부의 화학성분 분석과 피부 항노화 효능 평가)

  • Seok-Seon Roh;Gwang Jin Lee;Byunghyun Kim;Bo Kyoung Hwang;Hyojin Kim;Yun Hee Chang;Jae-kun Yoou;Young-Sung Ju
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.85-95
    • /
    • 2023
  • Objectives : This study was intended to reveal the chemical profiles of aerial(leaf, stem) and underground(rhizome, radix) parts of wild ginseng, and to investigate their anti-aging effects on human skin cells. Methods : Wild ginseng, estimated for over 20 years, was divided into the aerial and underground parts. Total phenolic contents of each extracts were measured using a Folin-ciocalteu method. The contents of 18 amino acids, 8 minerals and 27 ginsenosides were determined by GC-FID, ICP-MS and LC-MS, respectively. The anti-aging effects, including the radical scavenging activity, the activation of mitochondrial function on human fibroblasts, and the proliferation activity on human keratinocyte progenitor cells, for the whole plant and underground part of wild ginseng were evaluated. Results : The total phenolic acids, amino acids, and minerals in the aerial part were more than twice as high as in the underground part. Compared to the cultivated ginseng root, there were various types of ginsenosides in both parts of wild ginseng, and the total amount was more than twice as high. In particular, the aerial part significantly contained ginsenoside F1, F2, C-Mc1, and C-O, and the distinctive patterns that distinguish each parts of wild ginseng from the cultivated ginseng root were derived. The whole plant and underground part of wild ginseng exhibited significant antioxidant effect(14.3-45.6%), activation of mitochondrial membrane potential(105.5-120.1%), and cell proliferation(112.1-125.4%). Conclusions : The entire plant and underground part of wild ginseng are high value-added plants and have beneficial effects on skin anti-aging properties through its abundant metabolites.