• Title/Summary/Keyword: Anti Vibration Bar

Search Result 18, Processing Time 0.047 seconds

A Study on the Development of High Efficiency Anti-Vibration Boring Bar (고능률 방진 보링바 개발에 관한 연구)

  • 최춘규;이우영;최성주;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.109-112
    • /
    • 1995
  • This paper analyzes high efficiency anti-vibration boring bars which increase stability against chatter vibration in boring operations. Structural analysis and mathematical modeling with considering dynamic properties for three types of existing boring bars are performed to search for optimal design parameters. The purpose of this paper is to find out design parameters for high efficiency anti-vibration boring bar.

  • PDF

The study of the effects to the structure borne noise in terms of the Anti-Roll Bar's mounting position (앤티롤바의 취부위치에 따른 철도차량의 실내소음에 대한 연구)

  • Park, Hee-Jun;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1794-1798
    • /
    • 2008
  • Inside noise level of a running train in open field is the summation of air borne noise and structure-borne noise. Anti-roll bar is the major transmission path of vibration from bogie. And this vibration gives an effect to the structure borne noise. In this paper, the effect of anti-roll bar is investigated. Structure borne noise is analyzed in terms of changing the mounting position of anti-roll bar to reduce inside noise levels.

  • PDF

Methodology for Wear Prediction Considering the Gap between Tube and Support/Anti-vibration-bar in the Steam Generator (증기발생기 세관과 지지대 간극을 고려한 마모량 예측 방법론)

  • Lee, Yong-Son;Park, Chi-Yong;Kim, Tae-Soon;Boo, Myung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.84-89
    • /
    • 2004
  • When the tube contacted to support, anti-vibration bar of the steam generator in nuclear power plant, the contact area is worn out by their relative displacement and contact force. Connors and Au-Yang found the relation between tube worn displacement and volume, or normal work rate at given gap size. The present analysis is obtained the relation between tube worn displacement and normal work rate at various gap size modifying Au-Yang's result. The results are compared with Connors and Yettisir and Pettigrew's results. The comparison shows that Yettisir and Pettigrew result is fairly good agreement with Connors and present results with gap clearance, 0.015in.

  • PDF

3-D Finite Element Analyses of Steam Generator Tubes Considering the Gap Effects (간극효과를 고려한 증기발생기 전열관의 3차원 유한요소해석)

  • Cho, Young Ki;Park, Jai Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2011
  • Steam generator is one of the main equipments that affect safety and long term operation in nuclear power plants. Fluid flows inside and outside of the steam generator tubes and induces vibration. To prevent the vibration the tubes are supported by AVB (anti vibration bar). When the steam generator tube contact to AVB, it is damaged by the accumulation of wear and corrosion. Therefore studies are required to determine the effects of the gap between the steam generator tube and AVB. In order to obtain the stress and the displacement distributions of the steam generator tube, three dimensional finite element analyses were performed by using the commercial program ANSYS. Using the calculated the stress and the displacement distributions, the static residual strength of the steam generator tube can be evaluated. The results show that the stress and displacement of the steam generator tube increase significantly compared with the results from a zero-gap model.

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.153-159
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Fluid-elastic Instability Evaluation of Steam Generator Tubes

  • Cho, Young Ki;Park, Jai Hak
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • It has been reported that the plugged steam generator tube of Three Mile Island Unit 1 in America was damaged by growing flaw and then this steam generator tube destroyed the nearby steam generator tubes of normal state. On this account, stabilizer installation is necessary to prevent secondary damage of the steam generator tubes. The flow-induced vibration is one of the major causes of the fluid-elastic instability. To guarantee the structural integrity of steam generator tubes, the flow-induced vibration caused by the fluid-elastic instability is necessary to be suppressed. In this paper, the effective velocity and the critical velocity are calculated to evaluate the fluid-elastic instability. In addition, stability ratio value of the steam generator tubes is evaluated in order to propose one criterion when to determine stabilizer installation.

A Study on the Fatigue Behavior of RC Slabs of Widened Bridges (확폭교량 RC 상판의 피로거동에 관한 연구)

  • 홍순길;장동일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.143-150
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existmg bridges structurally a single structure. Since the joining-constructiori method has several problems in design and construction viewpoint, this study is conducted in order to investigate the flexural fatigue behavior of RC slabs, which are widened and influenced by traffic-induced vibration of existmg bridge during placing and curing of new concrete, with the prototype fatigue test. It was found that stress concentration at the jclmts anti slips between steel bar and concrete are occured. Hut, the general tx:havinrs are similar to the original state and joining-construction method using expansive concrete nut~gated the influence of the trafflc-induced vibration.

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.