• 제목/요약/키워드: Anthropomorphic Hand

검색결과 29건 처리시간 0.025초

Development of Anthropomorphic Robot Hand SKK Robot Hand I

  • Taehun Kang;Park, Hyoukryeol;Kim, Moonsang
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.230-238
    • /
    • 2003
  • In this paper, a three-fingered anthropomorphic robot hand, called SKK Robot Hand 1, is presented. By employing a two-DOF joint mechanism, called Double Active Universal Joint (abbreviated as DAUJ from now on) as its metacarpal joint, the hand makes it possible to mimic humanlike motions. We begin with addressing the motivation of the design and mention how the anthropomorphic feature of a human is realized in the design of SKK Hand I Also, the mechanism of the hand is explained in detail, and advantages in its modular design are discussed. The proposed hand is developed for use as a testbed for dextrous manipulation. It is expected to resolve the increasing demand for robotic applications in unstructured environments. We describe its hardware construction as well as the controller structure including the preliminary results of experiments.

안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발 (Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping)

  • 양현대;박성우;박재한;배지훈;백문홍
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

유연한 인간형 로봇 손의 설계 (Design of a Dexterous Anthropomorphic Robot Hand)

  • 지호준;이상헌;최병준;최혁렬
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.357-363
    • /
    • 2006
  • According to the study of grasping of the human hand, it is noted that the metacarpal link of the thumb plays the key role in power grasping. Also the face of fingertip can be discriminated into five parts depending on the grasping modalities such as pinch grasp, fingertip grasp and power grasp. In this paper, the design of the anthropomorphic robot hand which has a thumb and three fingers is proposed. A difference of SKKU hand II from the previous gripperlike robot hand is that the metacarpal bone is connected between the thumb and the palm. This thumb mechanism is specially designed to get the degree of freedom which can realize flexible motions relative to objects. Based on the analysis, the hand mechanism is developed. Since the driving circuits for the hand are embedded in the hand, only the communication lines supporting CAN protocol with DC power cable are necessary as the input. A new robot is manufactured and feasibility of the hand is validated through preliminary experiments.

촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II (Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II)

  • 최병준;이상헌;강성철;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.

인간형 다지 다관절 로봇 핸드의 개발 (Design and Control of Anthropomorphic Robot hand)

  • 천주영;최병준;채한상;문형필;최혁렬
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.

텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발 (Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes)

  • 김두형;신내호;오명호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.

Development of POSTEC HAND-V Index Finger Module

  • Lee, Ju-Hyoung;Youm, Youn-Gil;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2022-2026
    • /
    • 2003
  • We define that the end effector is the device which interact environment or objects with contact to execute tasks. Up to now, many researchers developed anthropomorphic robotic hands as end effectors. In this paper, we will discuss a problem on the development of a human-scale and motor-driven anthropomorphic robot hand. In this paper, design concept, actuator and transmission, kinematic design and sensing device are presented. By imitating the physiology of human hands, we devised new metacarpalphalangeal joint and interphalangeal joint suitable for human-size robot hands

  • PDF

휴먼형 로봇 손의 사물 조작 수행을 이용한 사람 데모 결합 강화학습 정책 성능 평가 (Evaluation of Human Demonstration Augmented Deep Reinforcement Learning Policies via Object Manipulation with an Anthropomorphic Robot Hand)

  • 박나현;오지헌;류가현;;;김태성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권5호
    • /
    • pp.179-186
    • /
    • 2021
  • 로봇이 사람과 같이 다양하고 복잡한 사물 조작을 하기 위해서는 휴먼형 로봇 손의 사물 파지 작업이 필수적이다. 자유도 (Degree of Freedom, DoF)가 높은 휴먼형(anthropomorphic) 로봇 손을 학습시키기 위하여 사람 데모(human demonstration)가 결합한 강화학습 최적화 방법이 제안되었다. 본 연구에서는 강화학습 최적화 방법에 사람 데모가 결합한 Demonstration Augmented Natural Policy Gradient (DA-NPG)와 NPG의 성능 비교를 통하여 행동 복제의 효율성을 확인하고, DA-NPG, DA-Trust Region Policy Optimization (DA-TRPO), DA-Proximal Policy Optimization (DA-PPO)의 최적화 방법의 성능 평가를 위하여 6 종의 물체에 대한 휴먼형 로봇 손의 사물 조작 작업을 수행한다. 학습 후 DA-NPG와 NPG를 비교한 결과, NPG의 물체 파지 성공률은 평균 60%, DA-NPG는 평균 99.33%로, 휴먼형 로봇 손의 사물 조작 강화학습에 행동 복제가 효율적임을 증명하였다. 또한, DA-NPG는 DA-TRPO와 유사한 성능을 보이면서 모든 물체에 대한 사물 파지에 성공하였고 가장 안정적이었다. 반면, DA-TRPO와 DA-PPO는 사물 조작에 실패한 물체가 존재하여 불안정한 성능을 보였다. 본 연구에서 제안하는 방법은 향후 실제 휴먼형 로봇에 적용하여 휴먼형 로봇 손의 사물 조작 지능 개발에 유용할 것으로 전망된다.

Anthropomorphic Robot Hand: Gifu Hand III

  • Jung, Kwang-Mok;Lee, Sang-Won;Kwak, Jong-won;Kim, Hun-Mo;Nam, Jae-Do;Jeon, Jae-Wook;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.78.6-78
    • /
    • 2002
  • $\textbullet$ The Gifu Hand III is a 5-fingered hand driven by built-in servomotors and has 20 joints with 10 DOF. $\textbullet$ The backlash of transmission, the mobility space, and the opposability of the thumb are improved. $\textbullet$ The new distributed tactile sensor with 859 detecting points is mounted on the hand surface. $\textbullet$ Experiments of grasping objects by a grasping strategy imitating human grasping reflex are shown.

  • PDF

Development of Anthropomorphic Robot Finger for Violin Fingering

  • Park, Hyeonjun;Lee, Bumjoo;Kim, Donghan
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1218-1228
    • /
    • 2016
  • This paper proposes a robot hand for a violin-playing robot and introduces a newly developed robot finger. The proposed robot hand acts as the left hand of the violin-playing robot system. The violin fingering plays an important role in determining the tone or sound when the violin is being played. Among the diverse types of violin fingering playing, it is not possible to produce vibrato with simple position control. Therefore, we newly designed a three-axis load cell for force control, which is mounted at the end of the robot finger. Noise is calculated through an analysis of the resistance difference across the strain gauge attached to the proposed three-axis load cell. In order to ensure the stability of the three-axis load cell by analyzing the stress distribution, the strain generated in the load cell is also verified through a finite element analysis. A sound rating quality system previously developed by the authors is used to compare and analyze the sound quality of the fourth-octave C-note played by a human violinist and the proposed robot finger.