• Title/Summary/Keyword: Anthropogenic VOC

Search Result 12, Processing Time 0.019 seconds

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Emission Characteristics of Volatile Oranic Compounds by Finishing Materials in a Newly Constructed Wooden House (신축목조주택 내 마감자재에 따른 휘발성유기화합물(VOCs)의 방산특성)

  • Lee, Hee-Young;Park, Sang-Bum;Park, Jong-Young;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.83-90
    • /
    • 2007
  • This study aimed at examining the effect of rooms decorated by eco-friendly finishing materials in a newly built wooden house on the emission of indoor air pollutions. According to the results of examination, the levels of benzene, toluene, ethyl benzene and styrene in all the rooms were below criteria of indoor air quality of newly-constructed houses. The levels of natural volatile organic compounds (NVOC), anthropogenic volatile organic compounds (AVOC) and total volatile organic compounds (TVOC) in room R1-1 which had Hwangto wall covering on it, were relatively higher than in room phytoncide wallpaper covered R2-1. The room R2-2 where bamboo charcoal panel used for wall covering showed higher level of AVOC compared to the room R1-2. Living room R1-3 was found to contain less TVOC, compared to the other four rooms. In addition, the ratio of NVOC to TVOC in the living room was higher than in the other rooms. This seemed to be attributed to Cryptomeria Japonica the living room finished material.