• Title/Summary/Keyword: Anthropogenic

Search Result 862, Processing Time 0.027 seconds

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province (충남 효교리 농업지역 천부지하수의 화학적 특성)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Choi, Eun-Gyeong;Kim, HyunKoo;Kim, MoonSu;Park, Ki-Hoon;Lim, Woo-Ri
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.630-646
    • /
    • 2020
  • In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.

Characteristics of Environmental Factors and Vegetation Community of Zabelia tyaihyonii (Nakai) Hisauti & H.Hara among the Target Plant Species for Conservation in Baekdudaegan (백두대간 중점보전종인 댕강나무의 식생 군집 및 환경인자 특성)

  • Kim, Ji-Dong;Lee, Hye-Jeong;Lee, Dong-Hyuk;Byeon, Jun Gi;Park, Byeong Joo;Heo, Tae-Im
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.201-223
    • /
    • 2022
  • Currently, species extinctions are increasing due to climate change and continued anthropogenic impact. We selected 300 species for conservation with emphasis on plants co-occurring in the Baekdudaegan area, which is a large ecological axis of Korea. We aimed to investigate the vegetation community and environmental characteristics of Zabelia tyaihyonii in the limestone habitat among the target plant species in the Baekdudaegan region to derive effective conservation strategies. In Danyang-gun, Yeongwol-gun, and Jecheon-si, we selected 36 investigation sites where Z. tyaihyonii was present. We investigated the vegetation, flora, soil and physical environment. We also found notable plants such as Thalictrum petaloideum, Sillaphyton podagraria, and Neillia uekii at the investigation sites. We classified forest vegetation community types into 4 vegetation units and 7 species group types. With canonical correspondence analysis (CCA) of the vegetation community and habitat factors, we determined the overall explanatory power to be 75.2%, and we classified the environmental characteristics of the habitat of Z. tyaihyonii into a grouping of three. Among these, we detected a relationship between the environmental factors elevation, slope, organic matter, rock ratio, pH, potassium, and sodium. We identified numerous rare and endemic plants, including Thalictrum petaloideum, in the investigation site, and determined that these groups needed to be preserved at the habitat level. In the classification of the vegetation units analyzed based on the emerging plants and the CCA, we reaffirmed the uniqueness and specificity of the vegetation community in the habitat of Z. tyaihyonii. We anticipate that our results will be used as scientific evidence for the empirical conservation of the native habitats of Z. tyaihyonii.

Future Prospects of Forest Type Change Determined from National Forest Inventory Time-series Data (시계열 국가산림자원조사 자료를 이용한 전국 산림의 임상 변화 특성 분석과 미래 전망)

  • Eun-Sook, Kim;Byung-Heon, Jung;Jae-Soo, Bae;Jong-Hwan, Lim
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.461-472
    • /
    • 2022
  • Natural and anthropogenic factors cause forest types to continuously change. Since the ratio of forest area by forest type is important information for identifying the characteristics of national forest resources, an accurate understanding of the prospect of forest type change is required. The study aim was to use National Forest Inventory (NFI) time-series data to understand the characteristics of forest type change and to estimate future prospects of nationwide forest type change. We used forest type change information from the fifth and seventh NFI datasets, climate, topography, forest stand, and disturbance variables related to forest type change to analyze trends and characteristics of forest type change. The results showed that the forests in Korea are changing in the direction of decreasing coniferous forests and increasing mixed and broadleaf forests. The forest sites that were changing from coniferous to mixed forests or from mixed to broadleaf forests were mainly located in wet topographic environments and climatic conditions. The forest type changes occurred more frequently in sites with high disturbance potential (high temperature, young or sparse forest stands, and non-forest areas). We used a climate change scenario (RCP 8.5) to establish a forest type change model (SVM) to predict future changes. During the 40-year period from 2015 to 2055, the SVM predicted that coniferous forests will decrease from 38.1% to 28.5%, broadleaf forests will increase from 34.2% to 38.8%, and mixed forests will increase from 27.7% to 32.7%. These results can be used as basic data for establishing future forest management strategies.

A Review on Ocean Acidification and Factors Affecting It in Korean Waters (우리나라 주변 바다의 산성화 현황과 영향 요인 분석)

  • Kim, Tae-Wook;Kim, Dongseon;Park, Geun-Ha;Ko, Young Ho;Mo, Ahra
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.91-109
    • /
    • 2022
  • The ocean is a significant sink for atmospheric anthropogenic CO2, absorbing one-third of the total CO2 emitted by human activities. In return, oceans have experienced significant declines in seawater pH and the aragonite saturation state also called ocean acidification. This study evaluates the distribution of aragonite saturation state, an indicator to assess the potential threat from ocean acidification, by combining newly obtained data from the west coast of South Korea with previous datasets covering the Yellow Sea, East Sea, northern South China Sea, and southeast coast of South Korea. In general, offshore waters absorb atmospheric CO2; however, most of the collected water samples show aragonite oversaturation. On the southeast coast, the aragonite saturation state was significantly affected by river discharge and associated variables, such as freshwater input with nutrients, seasonal stratification, biological carbon fixation, and bacterial remineralization. In summer, hypoxia and mixing with relatively acidic freshwater made the Jinhae and Gwangyang Bays undersaturated with respect to aragonite, possibly threatening marine organisms with CaCO3 shells. However, widespread aragonite undersaturation was not observed on the west coast, which receives considerable river water discharge. In addition, occasional upwelling events may have worsened the ocean acidification in the southwestern part of the East Sea. These results highlight the importance of investigating site-specific ocean acidification processes in coastal waters. Along with the above-mentioned seasonal factors, the dissolution of atmospheric CO2 and the deposition of atmospheric acidic substances will continue to reduce the aragonite saturation state in Korean waters. To protect marine ecosystems and resources, an ocean acidification monitoring program should be established for Korean waters.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

Distyly and Population Size of Abeliophyllum distichum Nakai, an Endemic Plant in Korea (한국 특산식물 미선나무의 이화주성(Distyly) 및 개체군 크기)

  • So-Dam Kim;Ae-Ra Moon;Shin-Young Kwon;Seok-Min Yun;Hwi-Min Kim;Dong-Hyoung Lee;Sung-Won Son
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.639-650
    • /
    • 2022
  • Abeliophyllum distichum Nakai, a rare plant with distylous characteristics, is native to certain parts of the Korean Peninsula. It is registered on the IUCN Red List of Threatened Species as a globally endangered plant. This study was conducted to establish an appropriate local conservation management plan suitable for future A. distichum populations by comparing and analyzing the flowering characteristics and population size according to distyly based on the results of quantitative surveys in 14 regions, including 8 areas with native populations of A. distichum and 6 natural monument populations. The number of individuals appearing in each population group was surveyed, and the flowering individuals were identified by style as being either pin or thrum flower types as they were being examined and recorded on the site. In total, 13,130 individuals of A. distichum (7,003 flowering and 6,127 non-flowering individuals) were recorded, but the balance of the number of pin- and thrum-flowered individuals in each population was not significant (p<0.05), indicating an imbalanced state. In particular, the Yeongdong (YD) population was very disproportionate compared to other populations, suggesting that its genetic diversity was low and the possibility of inbreeding was high. The average flowering and fruiting rates by management unit were much higher in the natural monument populations (89.2% and 55.3%, respectively) than in the natural habitat populations (39.0% and 8.5%, respectively). It may be due to a difference in reproductive growth resulting from light inflow into the forest caused by the upper crown closure. The area of occupation (AOO) of A. distichum on the Korean Peninsula covered an area of 23,224.5 m2. Although the natural monument population was smaller than the natural habitat population, its density was higher, likely as a result of the periodic management of natural monument populations, where the installation of protective facilities in certain areas restricts population spread. Conservation of A. distichum populations requires removing the natural monument populations suspected of anthropogenic and genetic disturbances and expanding the conservation priority population by designating new protected areas. Although the habitats of natural monument populations are managed by the Cultural Heritage Administration and local governments, there are no agencies that are responsible for managing natural habitat populations. Therefore, institutional improvement in the overall management of A. distichum should be prioritized.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Survey of Avian Status and Habitat Management Measures in Representative Development Areas of the Northern West Sea - Focusing on Songdo Area - (서해북부 대표 개발지역에 도래하는 조류 실태 및 서식지 관리방안 수립 - 송도일원을 대상으로 -)

  • Sul-Woong Shim;Young-Don Ju;Jung-Hoon Bae;Yang-Seop Bae
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.389-406
    • /
    • 2023
  • The research area, located in the northern coastal region of South Korea's West Sea, involves three bird habitats. Among these are two newly established habitats in Songdo International Business District, created by filling and developing tidal flats that were previously utilized as stopover sites for migratory birds. One of these areas showed decrease (Residual tidal flats, site.1) while the other showed increase (Artificial lake, site.2) in bird influx. The third habitat (Namdong reservoir, site.3) is a pre-existing stable habitat which has been maintained as a stable habitat. This study conducts an assessment of habitats based on avian population clusters and environmental surveys and proposes habitat management measures. A survey of bird populations and habitat environments was conducted for a total of 39 occasions from January to December 2022. The observed bird species totaled 14 families and 48 species with 20,760 individuals. Compared to the existing habitats, the newly established habitats showed relatively lower influx of bird species and individuals. During the habitat assessment, the newly established habitats were rated as I to II grade, while the existing habitat was rated as relatively high III grade on the grading assessment of the tidal flat. An analysis of habitat types revealed that the existing habitat, in which diverse strategies for habitat type diversity and mitigating anthropogenic interference were demonstrated, attracted a diverse range of bird species. Through this research, it was deduced that the diversity of habitat types plays a significant role in attracting various bird species. Upon evaluation of habitat types concerning the habitat characteristics of the bird species selected for habitat management, as habitat management measures, it is deemed that the creation of shielded green areas (referred to as 'buffer green') to minimize interference from the surroundings, the establishment of reed fields (site.1, 2) positively correlated with reservoirs, and the improvement of sandbanks (site.1) positively associated with tidal flats, the two relations which we drew from correlation analysis between occurrence species and habitat types, would contribute to the future restoration and maintenance of stable habitats. The results of this study can be applied not only to the study area but also to other development zones, such as coastal reclamation sites, which share similar geographical and environmental characteristics, including arrival sites for migratory birds.

Eco-environmental assessment in the Sembilan Archipelago, Indonesia: its relation to the abundance of humphead wrasse and coral reef fish composition

  • Amran Ronny Syam;Mujiyanto;Arip Rahman;Imam Taukhid;Masayu Rahmia Anwar Putri;Andri Warsa;Lismining Pujiyani Astuti;Sri Endah Purnamaningtyas;Didik Wahju Hendro Tjahjo;Yosmaniar;Umi Chodrijah;Dini Purbani;Adriani Sri Nastiti;Ngurah Nyoman Wiadnyana;Krismono;Sri Turni Hartati;Mahiswara;Safar Dody;Murdinah;Husnah;Ulung Jantama Wisha
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.738-751
    • /
    • 2023
  • The Sembilan Archipelago is famous for its great biodiversity, in which the humphead wrasse (Cheilinus undulatus) (locally named Napoleon fish) is the primary commodity (economically important), and currently, the environmental degradation occurs due to anthropogenic activities. This study aimed to examine the eco-environmental parameters and assess their influence on the abundance of humphead wrasse and other coral reef fish compositions in the Sembilan Archipelago. Direct field monitoring was performed using a visual census throughout an approximately one km transect. Coral cover data collection and assessment were also carried out. A coastal water quality index (CWQI) was used to assess the water quality status. Furthermore, statistical-based analyses [hierarchical clustering, Pearson's correlation, principal component analysis (PCA), and canonical correspondence analysis (CCA)] were performed to examine the correlation between eco-environmental parameters. The Napoleon fish was only found at stations 1 and 2, with a density of about 3.8 Ind/ha, aligning with the dominant composition of the family Serranidae (covering more than 15% of the total community) and coinciding with the higher coral mortality and lower reef fish abundance. The coral reef conditions were generally ideal for supporting marine life, with a living coral percentage of about > 50% in all stations. Based on CWQI, the study area is categorized as good and excellent water quality. Of the 60 parameter values examined, the phytoplankton abundance, Napoleon fish, and temperature are highly correlated, with a correlation coefficient value greater than 0.7, and statistically significant (F < 0.05). Although the adaptation of reef fish to water quality parameters varies greatly, the most influential parameters in shaping their composition in the study area are living corals, nitrites, ammonia, larval abundance, and temperature.

Anura Call Monitoring Data Collection and Quality Management through Citizen Participation (시민참여형 무미목 양서류 음성신호 수집 및 품질관리 방안)

  • Kyeong-Tae Kim;Hyun-Jung Lee;Won-Kyong Song
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.230-245
    • /
    • 2024
  • Amphibians, sensitive to external environmental changes, serve as bioindicator species for assessing alterations or disturbances in local ecosystems. It is known that one-third of amphibian species within the order Anura are at risk of extinction due to anthropogenic threats such as habitat destruction and fragmentation caused by urbanization. To develop effective protection and conservation strategies for anuran amphibians, species surveys that account for population characteristics are essential. This study aimed to investigate the potential for citizen participation in ecological monitoring using the mating calls of anura species. We also proposed suitable quality control measures to mitigate errors and biases, ensuring the extraction of reliable species occurrence data. The Citizen Science project was carried out nationwide from April 1 to August 31, 2022, targeting 12 species of anura amphibians in Korea. Citizens voluntarily participated in voice signal monitoring, where they listened to anura species' mating calls and recorded them using a mobile application. Additionally, we established a quality control process to extract reliable species occurrence data, categorizing errors and biases from citizen-collected data into three levels: omission, commission, and incorrect identification. A total of 6,808 observations were collected during the citizen participation in anura species vocalization monitoring. Through the quality control process, errors and biases were identified in 1,944 (28.55%) of the 6,808 data. The most common type of error was omission, accounting for 922 cases (47.43%), followed by incorrect identification with 540 cases (27.78%), and commission with 482 cases (24.79%). During the Citizen Science project, we successfully recorded the mating calls of 10 out of the 12 anuran amphibian species in Korea, excluding the Asian toads (Bufo gargarizans Cantor), Korean brown frog (Rana coreana). Difficulties in collecting mating calls were primarily attributed to challenges in observing due to population decline or discrepancies between the breeding season of non-emergent individuals and the timing of the citizen science project. This study represents the first investigation of distribution status and species emergence data collection through mating calls of anura species in Korea based on citizen participation. It can serve as a foundation for designing future bioacoustic monitoring that incorporates citizen science and quality control measures for citizen science data.