• Title/Summary/Keyword: Anthrax toxin

Search Result 12, Processing Time 0.017 seconds

Expression of MEK1 Fusion Protein in Yeast for Developing Cell Based Assay System, a Major Substrate of LeTx (Yeast내에서 MEK1 융합 단백질 발현 및 Lethal Factor 활성 검증)

  • Hwang, Hye-Hyun;Kim, Joung-Mok;Choi, Kyoung-Jae;Park, Hae-Chul;Han, Sung-Hwan;Chung, Hoe-Il;Koo, Bon-Sung;Park, Joon-Shik;Yoon, Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.195-198
    • /
    • 2006
  • Lethal toxin is a critical virulence factor of anthrax. It is composed two protein: protective antigen (PA) and lethal factor (LF). PA binds to specific cell surface receptors and, forms a membrane channel that mediates entry of LF into the cell. LF is a zinc-dependent metalloprotease, which cleaves MKKs [MAPK (mitogen-activated protein kinase) kinases] at peptide bonds very close to their N-termini. In this study, we suggest application of cell-based assays in the early phase of drug discovery, with a particular focus on the use of yeast cells. We constructed MEK1 expression system in yeast to determine LF activity and approached cell-based assay system to screen inhibitors, in which the results covering the construction of LF-substrate in yeast expression vector, expression, and LF-mediated proteolysis of substrate were described. These results could provided the basic steps in design of cell-based assay system with the high efficiency, rapidly and easy way to screening of inhibitors.

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.