• Title/Summary/Keyword: Anthracite fly ash

Search Result 34, Processing Time 0.026 seconds

A Study on Recycling of Waste Polyethylene Film (폐폴리에틸렌 필름의 재활용에 관한 연구)

  • Lee, Hwan-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.182-188
    • /
    • 2008
  • The compounds of recycled polyethylene(PE) and fly-ashes were prepared. Polymers used were sorted PE from mixed plastics of household waste and Low Density Polyethylene(LDPE) and Linear Low Density Polyethylene(LLDPE) recycled from the scrap of packaging film plants. Fly-ashes were from the power plant and from the household waste incinerator. The tensile strength of recycled LDPE and LLDPE compounds decreased and the flexural modulus increased with greater amount of the power plant fly-ash. Anthracite fly-ash gave rise to slightly higher tensile and flexural strength of the LLDPE mixtures than bituminous coal fly-ash presumably due to higher content of unburned carbon. The incinerator fly-ash introduced to household waste PE enhanced both tensile strength and flexural modulus of the compounds. When LDPE and household waste PE were used together, the synergistic effect of incinerator fly-ash to household waste PE was offset by reduced crystallization of LDPE due to the filler particle. The compounds of household waste PE and incinerator fly-ash might be applied to structural materials for such as sewage pipe, which reduces the waste treatment cost and conserve the environment and resources.

Effect of Successive Application and Residue of Fly Ash on Yield of Soybean [Glycine max (L) Merr.] (석탄회의 연용 및 잔효가 콩의 수량에 미치는 영향)

  • Hong, Soon-Dal;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.248-256
    • /
    • 1997
  • In order to establish a optimum level and proper method of fly ash application for soybean cultivation, the successive three years experiment was conducted in the field applied with four application levels of fly ash, 0, 30, 60, 90 MT/ha during the 1991 to 1993. Influence of successive application and residue of fly ash in soil on soybean growth and yield was discussed. Fly ash application had a favorable effect on soybean growth, however over application such as 90 MT/ha caused to turn the color into the brown of young leaf edge and eventually to have necrosis on the leaf. This symptom was prominent under the application of bituminous coal fly ash. In the 1st year cultivation of soybean, the highest yield was obtained at application level of 30 MT/ha. In the 2nd year, application of anthracite fly ash showed the highest yield at 60 MT/ha for successive application and at 90 MT/ha for the 1st year application followed by the 2nd year residue. Application of bituminous coal fly ash showed the highest yield at 60 MT/ha for the both successive application and residue. In the 3rd year, successive application of the both fly ash was given the highest yield at 30 MT/ha, respectively indicating the decrease of yield with increasing level of application. In case of residue plot, the highest yield by the application of anthracite fly ash was made at 90 MT/ha for the 1st year application followed by 2 years residue and at 60 MT/ha for the 1st and 2nd year application followed by the 3rd year residue. But in the residue plot of bituminous coal fly ash, yield was highest at 30 MT/ha showing the decrease of yield with increasing level of residue. Enhancement in growth and yield of soybean by application of fly ash was due to the fact that fly ash contained some plant nutrients such as phosphorus, silicon, and boron etc. and reformed soil pH that caused to increase availability of nutrients in soil.

  • PDF

Effect of Fly ash Application on the Yield of Rice and Silicate Availability in Paddy Soil (Fly ash 시용(施用)이 수도(水稻)의 수량(收量)과 논 토양(土壤)의 유효규산(有效珪酸) 함량(含量)에 미치는 영향(影響))

  • Kim, Yong-Woong;Yun, Chong-Hee;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.4
    • /
    • pp.275-283
    • /
    • 1994
  • The effects of anthracite and bituminous fly ash application on rice yield were investigated and the available silicate in paddy soil with ash application was analyzed. The obtained results are as follow : The yield of rice gradually decreased as the amount of anthracite ash increased. On the contrary, the rice yield gradually increased as the amount of bituminous ash increased. At harvesting stage the chemical properties in soil such as pH, organic content, and inorganic content($P_2O_5$, K. Ca, Mg and available $SiO_2$) were higher in bituminous ash treated soil than in anthracite treated soil. The amount of inorganic components in rice plant such as T-N, $P_2O_5$, $K_2O$, CaO, and MgO gradually decreased with the growing stage of rice. However, the amount of available silicate increased with the growing stage of rice. The silicate content in soil was determined by two different methods ; 1N-NaOAc extracted method and submerging setting method. In bituminous ash treated soil, the correlation between the silicate content in plant and in soil was found when the silicate content in soil was determined by the soil submerging method. In anthracite ash treated soil, however no correlation was found between the silicate content in plant and in soil determined by either method.

  • PDF

Content of Heavy Metals in Coal Fly Ash from the Samcheonpo and the Seocheon Power Plant (삼천포와 서천 화력발전소에서 발생하는 석탄회중의 중금속 함량에 관한 연구)

  • Yoon, Chung-Han;Oh, Keun-Chang;Kim, Yong-Woong;Shin, Bang-Sup
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 1995
  • Coal fly ashes collected from the Samcheonpo and the Seocheon Power Plants were analyzed for major and minor components and heavy metals such as As, Cd, Co, Cr, Cu, Ga, Hg, Mo, Ni, Pb, Sb, V and Zn in order to suggest basic data to apply coal fly ash as fertilizer or soil ameliorator. The specific gravity of the samples was less than 2.0, and amounts of organic matter range from 5.0% to 12.3%. The identified minerals by XRD were mainly quartz, mullite and pyrite in anthracite coal, and mainly quartz and mullite in bituminous coal. Generally, the contents of heavy metal elements analyzed were lower less than those of soil, though higher in some samples. Element couples of some elements( e.g., As-Mo, Zn ; Mo-As, Sb, V, Zn ; Sb-Zn ) show positive correlations with each other, but the high correlations of toxic elements such as As, Pb, Cd and Hg indicate to give attention to apply coal fly ash as fertilizer or soil ameliorator.

  • PDF

Effects of Fly Ash on Components in Percolated Water and Rice Growth (석탄회 처리가 논 토양성분의 용탈과 수도생육에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.226-235
    • /
    • 1996
  • This pot experiment was conducted to investigate the changes of leaching in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively in greenhouse. pH in percolated water was higher in non cultivated plot than in cultivated plot. pH of the fly ash treated plot was higher than that of the control plot. pH in the cultivated plot decreased gradually during the cultivation. The contents of $NH_4-N$, $NO_3-N$ and K in percolated water decreased rapidly after mid-July, and was very low in the cultivated plot. Over the cultivation time, P contents in percolated water was very low. $SiO_2$, contents in percolated water decreased rapidly after June. Na contents in percolated water was highest in mid-June and then decreased gradually. In the cultivated plot, Ca contents in percolated water was higher than that in the control plot. During the cultivation, Ca contents in percolated water decreased gradually. But, in later-term of cultivation. Ca contents in percolated water was relatively Mgh. Mg contents in percolated water decreased after mid-July, but decreased continuously till the later-term of cultivation. EC in the percolated water was highest in mid-June. and then decreased gradually. EC of fly ash treated plot was higher than that of the control plot. The soil pH was increased and phosphate content in the soil was accumulated very high by application of fly ashes in paddy field after rice cultivation. Fly ash treatment did not increase the contents of elements in percolated water compared with the control plot. The difference between anthracite and bituminous fly ash was not so clear. Fly ash treatment, inhibited early growth and tillering. But, in later-term of cultivation, the inhibition effects of nonproductive tillering was expected. Fly ash treatment will be good if it was applicated after last year's harvest because leaching would happen over fallowing time. Contents of inorganic elements in percolated water of fly ash treated plot was not so high compared with that in the control plot.

  • PDF

Mineralogical and Geochemical Characteristics of PFA (Pulverised Fuel Ash) from Yongwol Power Plant (영월 화력발전소에서 배출된 석탄회의 광물학적, 지화학적 특성)

  • Lee, Gyoo Ho;Choi, Sun Kyung;Moon, Hi-Soo;Lee, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.443-450
    • /
    • 1997
  • The main purpose of this study is to investigate mineralogical and chemical changes during natural weathering, and assess the mobility of major and trace elements. Yongwol power plant utilize anthracite coal which is mainly composed of illite, kaolinite, pyrophyllite and quartz in mineralogy. Coal and coal-derived fly ash samples were sampled by the electrostatic precipitator in Yongwol coal-fired power plant in Korea. Short term weathered fly ash were also collected in ash disposal mound, and two profile soil samples were taken from an ash near the power plant. Amorphous materials are the main component of the fly ash, and mullite, quartz, magnetite and heamatite are present in all coal-derived fly ash. In chemistry, Si and Al are the most abundant elements of the total content. The ash samples were fractionated into upper $90{\mu}m$ and under $45{\mu}m$ size. Finer particles show higher concentrations in metal contents including Co, Cr, Cu, Ni, V, Zn and Pb. Concentration of Zn and Pb are nearly 4 times higher concentration in the finer particles. For the profile samples, the concentrations of $SiO_2$, $Na_2O$, MgO and $K_2O$ generally show increasing trends with depth, whereas those of $Fe_2O_3$ and $TiO_2$ appear to decrease with depth. Content of MnO does not show any specific depth trend. For the trace elements, Co, Cu, Ni and V show increasing concentrations with depth.

  • PDF

The Strength and Durability of Compacted Coal Ash with Proper Mixing Ratio of Fly Ash to Bottom Ash (비회와 저회의 적정 혼합비로 다짐한 석탄회의 강도와 내구성)

  • Chun, Byung Sik;Lee, Eun Soo;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.207-213
    • /
    • 1992
  • In this study, the strength and durability of compacted coal ash with proper mixing ratio of fly ash to bottom ash, such as 5:5 or 6:4, are examined for use of highway embankment and subgrade materials. Right after compaction, the strength of bituminous mixed coal ash is greater than that of anthracite mixed coal ash. The distinguished increase of strength with curing time is observed only in Ho-nam mixed coal ash that contains a lot of free lime, and the strength increase with curing time are not seen or little in the others. The durability in sinking test is good also in Ho-nam mixed coal ash, but satisfactory by adding 2% cement in the others. And it is seen that the effects of the strength increase with adding cement are greater in coal ash with proper mixing ratio than in fly ash or bottom ash respectly.

  • PDF

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Influence of Fly Ash Application on Content of Heavy Metal in the Soil I. Content Change by the Application Rate (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속함량(重金屬含量)에 미치는 영향(影響) I. 시용량(施用量)에 따른 함량변화(含量變化))

  • Kim, Bok-Young;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.65-71
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents in the arable soils. Rice was cultivated on the two types of paddy field(clay loam and sandy loam soil) with 0, 4, 8, 12t/10a of anthracite fly ash and bituminous coal fly ash, respectively. And soybean was cultivated on the same types of upland field with those of 0, 3, 6, 9t/10a, respectively. At the harvest time, the heavy metal contents in surface and subsoil were investigated. The results were summarized as follows : 1. Anthracite fly ash. 1) In the paddy field of clay loam, the contents of Cu and Zn in the surface soil and Cd and Ni in the subsoil were increased with the increase of the amount of fly ash applied, but the others didn't show that tendency. 2) In the paddy field of sandy loam, only the content of Fe was increased in the surface and subsoils. 3) In the case of upland soil, the concentration of Ni and Cr in the surface soil and Cd in the subsoil were increased in the clay loam soil, and those of Cr in the surface soil and Pb in the subsoil were increased in the sandy loam soil. 2. Bituminous coal fly ash 1) In the paddy field of clay loam, the contents of Cu and Zn in the subsoil were increased with increase of the amount of fly ash applied, but in the case of sandy loam, those of Pb and Ni in the surface soil were increased. 2) In the upland soil of clay loam, the concentration of Ni in the surface soil and Pb in the subsoil were increased. 3) In case of upland soil of sandy loam, the contents of Cr and Fe were increased in the surface and subsoil, respectively, but those of Cu and Mn were increased in the both of the surface and subsoil.

  • PDF

Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash (매립회를 사용한 시멘트 모르타르의 재료 물성 평가에 대한 실험적 연구)

  • Jung, Sang Hwa;Kim, Joo Hyung;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.108-117
    • /
    • 2013
  • Among the byproducts from thermal power plant using coal combustion, fly ash as mineral admixture is widely utilized in concrete manufacturing for its engineering merits. However residuals including bottom ash are usually reclaimed. This study presents an evaluation of engineering properties in cement mortar with pond ash (PA). For this work, two types of pond ash (anthracite and bituminous coal) are selected from two reclamation sites. Cement mortar specimens considering two w/c (0.385 and 0.485) ratios and three replacement ratio of sand (0%, 30%, and 60%) are prepared and their workability, mechanical, and durability performance are evaluated. Anthracite pond ash has high absorption and smooth surface so that it shows reasonable workability, strength development, and durability performance since it has dense pore structure due to smooth surface and sufficient mixing water inside. Reuse of PA is expected to be feasible since PA cement mortar has reasonable engineering performance compared with normal cement mortar.