• Title/Summary/Keyword: Anthozoans

Search Result 12, Processing Time 0.016 seconds

Two anthozoans, Entacmaea quadricolor (order Actiniaria) and Alveopora japonica (order Scleractinia), host consistent genotypes of Symbiodinium spp. across geographic ranges in the northwestern Pacific Ocean

  • Chang, Soo-Jung;Rodriguez-Lanetty, Mauricio;Yanagi, Kensuke;Nojima, Satoshi;Song, Jun-Im
    • Animal cells and systems
    • /
    • v.15 no.4
    • /
    • pp.315-324
    • /
    • 2011
  • The actiniarian sea anemone, Entacmaea quadricolor, and the scleractinian coral, Alveopora japonica, host symbiotic dinoflagellates belonging to the genus Symbiodinium (Freudenthal). We studied the host-symbiont specificity of these two anthozoan hosts in the northwestern Pacific Ocean. Symbionts within the two hosts were identified using partial large subunit (LSU) ribosomal DNA (rDNA) and complete internal transcribed spacers (ITS) 1 rDNA regions. The host, E. quadricolor, was identified using the partial LSU rDNA molecular marker. Genetic analysis showed that E. quadricolor only harbors dinoflagellates belonging to subclade C1/3 of the genus Symbiodinium. Moreover, no genetic variation was detected among the symbionts of E. quadricolor within the study region (Korea and Japan), even though the two distant sites were separated by more than 1000 km, at collection depths of 1 m in shallow and 13-16 m in deep water. Whilst scleractinian corals host multiple Symbiodinium clades in tropical waters, A. japonica, sampled over a wide geographical range (800 km) within the study region, only hosts Symbiodinium sp. clade F3. The high specificity of endosymbionts in E. quadricolor and A. japonica within the northwestern Pacific Ocean could be accounted for because symbiotic dinoflagellates within the host anemones appear to be acquired maternally, and the Kuroshio Current might affect the marine biota of the northwestern Pacific. However, the consistency of the symbiotic relationships between these two anthozoan hosts and their endosymbionts could change after climate change, so this symbiotic specificity should be monitored.

Assessment of the Impacts of 'Sea Prince' Oil Spill on the Rocky Intertidal Macrobenthos Community (암반조간대 대형저서동물군집에 대한 씨프린스호 유류 유출사고 영향 평가)

  • Shin, Hyun-Chool;Lee, Jung-Ho;Lim, Kyeong-Hun;Yoon, Seong-Myeoung;Koh, Chul-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.159-169
    • /
    • 2008
  • This study was aimed to classify the intertidal macrozoobenthic community status after 2 years of Sea Prince oil spill, and oil spill effects along oil spreading track from heavily impacted to unaffected reference site. Field sampling was initiated in late February and continued through November 1998 seasonally, after 2.5 years of oil spill. 7 rocky sampling sites were selected among coastal regions coated and/or affected by the Sea Prince spilled oil. Identified species was 158 species, 65 family, 24 order, 9 class, 5 phylum. Mollusca was the dominant faunal group comprising 100 species (63.3%), and followed by 38 species of Crustacea (24.1%), 12 species of Echinodermata (7.6%), 5 species of Porifera (3.2%), and 3 species of Cnidaria (1.9%). On Dugpo of Sori Island, the fewest species was collected from 28 species to 35 species seasonally among sampling stations. But far away Dugpo toward Gamak Bay, the number of species increased, collecting the maximum on Sohwoenggan Island. At the wreck site of Sori Island, especially the species number of attached animals such as poriferans and anthozoans was very low compared to another site. The density and biomass on the higher tidal zone increased toward the low affected sites, but biomass on middle tidal zone decreased. The invertebrate biomass of study area was dependent on the sessile animals. The major dominant species were small-sized barnacles, Chthmallus challengeri, periwinkles, Littorina brevicula, mussels, Septifer virgatus, and so on. The biomass of C. challengeri and L. brevicula on the higher tidal zone was highest in the wreck site of Sori Island and decreased further and further. However, mussels on the middle tidal zone showed the inverse trends because of the larger individual size of mussel inhabited in Sori Island than those of another sites. As a result of community analysis, the effect of oil spill was not found distinctly. Several ecological indices and cluster analysis did not show the meaningful variation with oil track despite of the conspicuous differences among tidal heights. These indicate that the macrozoobenthic community level of oil spreaded zone recovered in some degree after the Sea Prince oil spill accident, but population or individual levels of dominant sessile animals took more recovery times.