• Title/Summary/Keyword: Antenna Model

Search Result 526, Processing Time 0.025 seconds

A development of GEO satellite ground control softwares

  • Lee, H.J.;Kim, J.M.;Chung, S.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.38-43
    • /
    • 1994
  • To provide more instructive and a safer ground control operation environments for satellite operators, and subsequently to implement a better look-and-feel user interface and a structural mechanism to enhance the efficiency of control and monitoring facilities, we have developed a prototype(laboratory model) ground control softwares targeting for the first generation KOREASAT scheduled to be launched in 1995. As far as the functionality is concerned, the developed system is covering almost all the mission phase operational functions except for some functions like antenna tracking control that are necessary for real operation environments. Most of the functions of the system is realized in softwares but some hardwares needed for TM/TC RF communications are also included in it. The system is now being integrated and under the system test. The performance and functionality is to be evaluated by the end of this year by using the satellite software simulator. Next year, this system could be configured to be used as a workbench for a online/off-line analysis of the operating KOREASAT satellites.

  • PDF

RF Interference Analysis and Verification in the Synthetic Aperture Radar Satellite System (영상레이더 위성시스템 구조물의 RF 간섭특성 분석 및 검증)

  • Jang, Jae-Woong;Kim, Tae-Yoon;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.187-196
    • /
    • 2009
  • Synthetic Aperture Radar(SAR) satellite system for broad-area imaging has RF systems including SAR radiating a high power, data link system transmitting the acquired image data from the SAR, TC&R(Telemetry, Command, and Ranging) to communicate with a ground segment to control a satellite. Each system transmits RF signal having various frequencies and radiates a high power, RS(Radiated Susceptibility) specification should be verified at an electronic unit mounted in satellite. RF interference can be happened because of non-linearity of a RF system. Therefore, we manufactured a structure model installed antennas which have a similar pattern with a real antenna, the effect by RF interference is analyzed and verified.

  • PDF

Optimum Design of Bracket for Satellite Antenna (위성안테나 브레켓의 최적설계)

  • Hwang, Tae-Kyung;Lim, O-Kaung;Lee, Jin-Sick;Lee, Jong-Ok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.451-455
    • /
    • 2003
  • Major concern in modern industry is how to reduce the time and cost for product efficient production. Among many mechanical parts of a satellite, bracket plays an important role to support the load when the satellite is launched to space. so enough strength and stiffness. A designer could add unnecessary material and strength it so as not to fail when it used. But if mechanical part of satellite is over-designed, cost will rise and it also goes against to the aim of lightness. To achieve lightness and enough strength and stiffness, optimization algorithm should be introduced in design process. In this study, conceptual design of bracket is carried out to increase the performance of satellite. Some parameter which could change the weight of this part are selected as design variables. Total weight of bracket is to be minimized while displacement and stress should not exceed limit. Size optimization is done with 3D solid element and PLBA, the RQP algorithm. The weight of 0.262kg of initial model is reduced to 0.241kg after optimization process, so 9.8% of weight reduction is obtained.

  • PDF

DETERMINATION OF GPS HEIGHT WITH INCORPORATION OF USING SURFACE METEOROLOGICAL MEASUREMENTS

  • Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • Although the positioning accuracy of the Global Positioning System (GPS) has been studied extensively and used widely, it is still limited due to errors from sources such as the ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath and tropospheric influence. This investigation addresses the tropospheric effect on GPS height determination. Data obtained from GPS receivers and co-located surface meteorological instruments in 2003 are adopted in this study. The Ministry of the Interior (MOl), Taiwan, established these GPS receivers as continuous operating reference stations. Two different approaches, parameter estimation and external correction, are utilized to correct the zenith tropospheric delay (ZTD) by applying the surface meteorological measurements (SMM) data. Yet, incorrect pressure measurement leads to very poor accuracy. The GPS height can be affected by a few meters, and the root-mean-square (rms) of the daily solution ranges from a few millimeters to centimeters, no matter what the approach adopted. The effect is least obvious when using SMM data for the parameter estimation approach, but the constant corrections of the GPS height occur more often at higher altitudes. As for the external correction approach, the Saastamoinen model with SMM data makes the repeatability of the GPS height maintained at few centimeters, while the rms of the daily solution displays an improvement of about 2-3 mm.

  • PDF

EXPERIMENTAL DEMONSTRATION OF ADVANTAGE OF MOTION INDUCED SYNTHETIC APERTURE RADIOMETER

  • Park, Hyuk;Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Yu, Hwan-Wook;NamGoong, Up;Sim, Won-Seon;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.22-25
    • /
    • 2008
  • Aperture synthesis with platform motion has been presented as a useful tool to achieve the high spatial resolution imaging. Using a motion induced synthetic aperture radiometer (MISAR), a passive microwave image can be achieved with a small number of antennas. Moreover, the MISAR is capable of imaging better than the case without motion, using the same configuration of antenna array. With a platform motion, visibility can be sampled more efficiently, and as a result the imaging performance of the MISAR shows higher quality than the case without platform motion. In this paper, the advantage of MISAR is demonstrated experimentally. Using a laboratory model of inteferometric radiometer, the point source images are obtained under the condition with platform motion and without platform motion. In the experimental results, the point source response of the MISAR shows better quality of sidelobe level and beam efficiency than the case without platform motion.

  • PDF

Rotationally Invariant Space-Time Trellis Codes with 4-D Rectangular Constellations for High Data Rate Wireless Communications

  • Sterian, Corneliu Eugen D.;Wang, Cheng-Xiang;Johnsen, Ragnar;Patzold, Matthias
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.258-268
    • /
    • 2004
  • We demonstrate rotationally invariant space-time (ST) trellis codes with a 4-D rectangular signal constellation for data transmission over fading channels using two transmit antennas. The rotational invariance is a good property to have that may alleviate the task of the carrier phase tracking circuit in the receiver. The transmitted data stream is segmented into eight bit blocks and quadrature amplitude modulated using a 256 point 4-D signal constellation whose 2-D constituent constellation is a 16 point square constellation doubly partitioned. The 4-D signal constellation is simply the Cartesian product of the 2-D signal constellation with it-self and has 32 subsets. The partition is performed on one side into four subsets A, B, C, and D with increased minimum-squared Euclidian distance, and on the other side into four rings, where each ring includes four points of equal energy. We propose both linear and nonlinear ST trellis codes and perform simulations using an appropriate multiple-input multiple-output (MIMO) channel model. The 4-D ST codes constructed here demonstrate about the same frame error rate (FER) performance as their 2-D counterparts, having however the added value of rotational invariance.

Secrecy Spectrum and Secrecy Energy Efficiency in Massive MIMO Enabled HetNets

  • Zhong, Zhihao;Peng, Jianhua;Huang, Kaizhi;Xia, Lu;Qi, Xiaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.628-649
    • /
    • 2017
  • Security and resource-saving are both demands of the fifth generation (5G) wireless networks. In this paper, we study the secrecy spectrum efficiency (SSE) and secrecy energy efficiency (SEE) of a K-tier massive multiple-input multiple-output (MIMO) enabled heterogeneous cellular network (HetNet), in which artificial noise (AN) are employed for secrecy enhancement. Assuming (i) independent Poisson point process model for the locations of base stations (BSs) of each tier as well as that of eavesdroppers, (ii) zero-forcing precoding at the macrocell BSs (MBSs), and (iii) maximum average received power-based cell selection, the tractable lower bound expressions for SSE and SEE of massive MIMO enabled HetNets are derived. Then, the influences on secrecy oriented spectrum and energy efficiency performance caused by the power allocation for AN, transmit antenna number, number of users served by each MBS, and eavesdropper density are analyzed respectively. Moreover, the analysis accuracy is verified by Monte Carlo simulations.

Wireless Power Transfer System

  • Arai, Hiroyuki
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.143-151
    • /
    • 2011
  • This paper presents a survey of recent wireless power transfer systems. The issue of wireless power transfer is to achieve a highly efficient system with small positioning errors of the facilities setting. Several theories have been presented to obtain precise system design. This paper presents a summary of design theory for short range power transfer systems and detailed formulations based on a circuit model and an array of infinitesimal dipoles. In addition to these theories, this paper introduces a coil array scheme for improving the efficiency for off axis coils. In the microwave range, tightly coupled resonators provide a highly efficient power transfer system. This paper present san-overlay resonator array consisting of half wavelength microstrip line resonators on the substrate with electromagnetically coupled parasitic elements placed above the bottom resonators. The tight couplings between the waveguide and the load resonator give strong power transmission and achieve a highly efficient system, and enables a contact-less power transfer railroad. Its basic theory and a demonstration of a toy vehicle operating with this system are presented. In the last topic of this paper, harmonic suppression from the rectenna is discussed with respect to acircular microstrip antenna with slits and stubs.

Modern Software Defined Radar (SDR) Technology and Its Trends

  • Kwag, Young-Kil;Jung, Jung-Soo;Woo, In-Sang;Park, Myeong-Seok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • Software defined radar (SDR) is a multi-purpose radar system where most of the hardware processing is performed by software. This paper introduces a concept and technology trends of software defined radar, and addresses the advantages and limitations of the current SDR radar systems. For the advanced SDR concept, the KAU SDR Model (KSM) is presented for the multimode and multiband radar system operating in S-, X-, and K-bands. This SDR consists of a replaceable multiband antenna and RF hardware, common digital processor module with multimode, and open software platform based on MATLAB and LabVIEW. The new concept of the SDR radar can be useful in various applications of the education, traffic monitoring and safety, security, and surveillance depending on the various radar environments.

The Detection Characteristics of the Partial Discharge Pluses with Folded Dipole Type Sensors in the Oil Transformers (유입 변압기에서 폴디드 다이폴형 센서의 부분방전 펄스 검출 특성)

  • Kim, Kwang-Hwa;Yi, Sang-Hwa;Sun, Jong-Ho;Kang, Dong-Sik;Kim, Jae-Chal
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.485-491
    • /
    • 2006
  • This paper describes that the distribution of electromagnetic field occurred by PD(Partial Discharge) pulse was calculated with simulation program and characteristics of calibration and PD pulses measured with folded dipole types sensors were analyzed. As the distribution of electromagnetic field in simulation was very random the wide band measuring methods were good. Therefore three folded dipole antenna types sensors which had different their widths were designed and made. The signal according to direction and distance between sensor and pulse source in these sensor was measured and the spectrum of surface PD were acquired in the experiment of model transformer. In this result the characteristics of sensor which had middle width was better than others and the main spectrum of PD signals in surface discharge were existed in around 220MHz, 320MHz and from 450MHz to 750MHz.