• Title/Summary/Keyword: Antenna Model

Search Result 527, Processing Time 0.028 seconds

Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

  • Hur, Jun;Byun, Gangil;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • This paper proposes a design of small controlled reception pattern antenna (CRPA) arrays using circular microstrip loops with frequency-insensitive characteristics. The proposed array consists of seven identical upper and lower circular loops that are electromagnetically coupled, which results in a frequency-insensitive behavior. To demonstrate the feasibility of the proposed feeding mechanism, the proposed array is fabricated, and its antenna characteristics are measured in a full-anechoic chamber. The operating principle of the proposed feeding mechanism is then interpreted using an equivalent circuit model, and the effectiveness of the circular loop shape is demonstrated by calculating near electromagnetic fields in proximity to the radiator. The results confirm that the proposed feeding mechanism is suitable to have frequency-insensitive behavior and induces strong electric and magnetic field strengths for higher radiation gain in extremely small antenna arrays.

Energy-efficiency Optimization Schemes Based on SWIPT in Distributed Antenna Systems

  • Xu, Weiye;Chu, Junya;Yu, Xiangbin;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.673-694
    • /
    • 2021
  • In this paper, we intend to study the energy efficiency (EE) optimization for a simultaneous wireless information and power transfer (SWIPT)-based distributed antenna system (DAS). Firstly, a DAS-SWIPT model is formulated, whose goal is to maximize the EE of the system. Next, we propose an optimal resource allocation method by means of the Karush-Kuhn-Tucker condition as well as an ergodic method. Considering the complexity of the ergodic method, a suboptimal scheme with lower complexity is proposed by using an antenna selection scheme. Numerical results illustrate that our suboptimal method is able to achieve satisfactory performance of EE similar to an optimal one while reducing the calculation complexity.

Design and Analysis of Microstrip Line Feed Toppled T Shaped Microstrip Patch Antenna using Radial Basis Function Neural Network

  • Aneesh, Mohammad;Kumar, Anil;Singh, Ashish;Kamakshi, Kamakshi;Ansari, J.A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.634-640
    • /
    • 2015
  • This paper deals with the design of a microstrip line feed toppled T shaped microstrip patch antenna that gives dualband characteristics at 4 GHz and 6.73 GHz respectively. The simulation of proposed antenna geometry has been performed using method of moment based IE3D simulation software. A radial basis function neural network (RBFNN) is used for the estimation of bandwidth for dualband at 4 GHz and 6.73 GHz respectively. In RBFNN model, antenna parameters such as dielectric constant, height of substrate, and width are used as input and bandwidth of first and second band is considered as output of the network. To validate the RBFNN output, an antenna has been physically fabricated on glass epoxy substrate. The fabricated antenna can be utilized in S and C bands applications. RBFNN results are found in close agreement with simulated and experimental results.

Design of an Electrically Small Antenna Using Metamaterial Structure (메타물질 구조를 이용한 전기적 소형 안테나의 설계)

  • Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • In this paper, a novel electrically small monopole type resonant antenna is proposed. The very short length monopole (${\iota}{\approx}{\lambda}_g/15$ ) acts as a capacitive element and the slot on the ground structure acts as an inductive element, hence the combined system with these two elements thus form an LC resonator. The equivalent circuit model of the antenna structure was used to analysis and qualify the design correctness. Although the proposed antenna has very small size, it shows good performances. The measured maximum gain and radiation efficiency of the fabricated antenna at the frequency of 2.1 GHz was 3.6 dBi and 77.8 %, respectively.

  • PDF

A Study of Cross Alignment for Increasing the Performance of Small Antenna (소형 안테나의 성능 향상을 위한 직교 배치에 관한 연구)

  • Kim, Jong-Sung;Choi, Kyung;Kim, Jae-Heung
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.155-161
    • /
    • 2002
  • As the wireless communications are gradually developed, the higher frequency is demanded and the smaller the size of antenna shall be reduced by the wavelength of the operating frequency. However, the smaller the size of antenna becomes, the less the gain is obtained according to the frequency, so that a new attempt such as an array antenna has been examined to improve the characteristics. Also, for the convenience of communication, the omni-directional property is required. In this paper, two antennas system which is aligned in cross direction in tested and analyzed. The main scope is focused to get an appropriated distance between the two small antennas to get better properties. There are various ways of array arrangement, but in this study, it should be placed on the same PCB for easy implementation and the direction of each antenna are aligned to be a cross($90^{\circ}$) position. The study is carried out by comparing the radiation patterns mainly, and the theoretical expectation and the computer simulation are also executed. The final model is the folded IF-antennas system printed on PCB and the ideal dipole-antenna arrangement in also test to verify the possibility of our implementation. And it is finally proved by measuring experiments.

  • PDF

Fabrication Method of 3D Feed Horn Shape MEMS Antenna Array Using MRPBI(Mirror Reflected Parallel Beam Illuminator) with Inclined X-Y-Z Stage (MRPBI를 이용한 3D Feed Horn Shape MEMS Antenna Array의 제조)

  • Park, Jong-Yeon;Kim, Kun-Tae;Moon, Sung;Pak, Jung-Ho;Park, Jong-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1914-1917
    • /
    • 2001
  • 3D Feed Horn Shape MEMS Antenna Array는 적외선 이미지 소자 또는 Tera hertz band 등에서 많은 응용을 할 수 있는 장점을 가진 MEMS 구조체 이다. 하지만 일반적인 MEMS 공정을 이용해서 3D Feed Horn Shape MEMS antenna array를 구현하기는 적합하지 않았다. 본 논문에서는 마스크와 웨이퍼가 일체 된 형태의 경사된 척이 초 저속으로 회전하면서 노광을 할 수 있는 새로운 방식과 미러 반사구조를 이용해서 평행광을 얻을수 있는 노광장치 (MRPBI : Mirror Reflected Parallel Beam Illuminator) System제작방법을 제안하였다. 3D Feed Horn Shape MEMS Antenna의 구조적인 high apect ratio의 특성에 의해서 SU-8과 PMER Negative Photo resist를 이용한 기본적인 실험을 통해 3D 구조체의 구현 가능성을 증명하였다. 또한 Microbolometer의 성능향상을 위한 이론적인 3D MEMS Antenna Model들을 HFSS(High Frequency Structure Simulator)을 이용해서 그 최적구조를 제안하고 3D MEMS Antenna Gain 값을 비교 분석하였다.

  • PDF

LOS(line-of-sight) Stabilization Control of OTM(on-the-move) Antenna Driven by Geared Flexible Transmission Mechanism (기어와 유연축을 갖는 구동계로 구동되는 OTM 안테나 시선의 안정화 제어)

  • Kang, Min-Sig;Yoon, Wo-Hyun;Lee, Jong-Bee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.951-959
    • /
    • 2011
  • In this study, an OTM(on-the-move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite while moving was addressed. Since LOS(line-of-sight) of antenna should direct satellite consistently while vehicle moving to guarantee high satellite communication quality, active antenna LOS stabilization is a core technology for OTM antenna. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. In consideration of driving mechanism which consists of gear train and flexible driving shafts, a two-mass-system dynamic model coupled with vehicle motion was presented. An internal PI-control loop + outer PI-control loop structure has been suggested in order to damp the torsional vibration and stabilize control system. The classical pole-placement method was applied to design control gains. In addition, a vehicle motion compensation control beside of the feedback control loop has been suggested to improve LOS stabilization performances. The feasibility of the proposed control design was verified along with some experimental results.

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee;Lee, Seong Cheol;Kim, Won Tae;Park, Jagang;Min, Bumki;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.

Design and Simulation of an On-body Microstrip Patch Antenna for Lower Leg Osteoporosis Monitoring (하지 골다공증 감시를 위한 온-바디 마이크로 스트립 패치 안테나의 설계 및 모의실험)

  • Kim, Byung-Mun;Yun, Lee-Ho;Lee, Sang-Min;Park, Young-Ja;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.763-770
    • /
    • 2021
  • In this paper, in order to exclude the influence of BAN(Body Area Network) signals operating in the ISM band, the design and optimization process of an on-body microstrip patch antenna operating at 4.567 GHz is presented. The antenna for the monitoring of the lower legs with cancellous osteoporosis is designed to be lightweight and compact with improved return loss and bandwidth. The structure around the applied lower leg consisted of a five-layer dielectric plane. Taking into account losses, the complex dielectric constant of each layer is calculated using multi Cole-Cole model parameters, whereas a unipolar model is used for normal or osteoporotic cancellous bones. The return loss of the coaxial feed antenna on the phantom is -67.26 dB at 4.567 GHz, and in the case of osteoporosis, at the same frequency the return loss difference is 35.88 dB, and the resonance frequency difference is about 7 MHz.

Two-dimensional continuum modelling of an inductively coupled plasma reactor

  • Kim, Dong-Ho;Shung, Won-Young;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • Numerical analysis of the transport phenomena in an inductively coupled plasma reactor was conducted with two-dimensional axisymmetric model including the electromagnetic field model, electron and species density models. The spatial distribution of the charged species in the ion flux to the wafer have been calculated to examine the influence of the process conditions including antenna and reactor geometry. The antenna radius had a significant influence on the plasma state and axial ion flux distribution.

  • PDF