• Title/Summary/Keyword: Antarctic sea

Search Result 119, Processing Time 0.024 seconds

Change of Regional Atmospheric Circulation Related with Recent Warming in the Antarctic Peninsula (남극반도의 최근 온난화와 관련된 지역적 대기순환의 변화)

  • Lee, Jeong-Soon;Kwon, Tae-Yong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Jeong-Woo
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.503-518
    • /
    • 2003
  • This study examines the relationship among temperature, wind, and sea level pressure to understand recent warming in the vicinity of the Antarctic Peninsula. To do this, the surface air temperature, NCEP/NCAR reanalysis wind data and sea level pressure data for the period of 40 years are analyzed. The 40-year surface air temperature data in the Antarctic Peninsula reveals relatively the larger warming trends for autumn and winter than other seasons. The variability of the surface air temperature in this region is compared with that of the regional atmospheric circulation. The surface air temperature is positively correlated with frequency of northwesterlies and negatively correlated with frequency of southeasterlies. This relation is more evident in the northern tip of the Antarctic Peninsula for autumn and winter. The trend analysis of wind frequency in the study area shows increasing and decreasing trends in the frequency of northwesterlies and southeasterlies, respectively, in the northwestern part of the Weddell Sea for autumn and winter. And also it is found that these winds are closely related with decreasing of sea level pressure in the southeastern region of the Antarctic Peninsula. Furthermore from the seasonal variation of sea level pressure in this area, it may be presumed that decreasing of sea level pressure in the southeastern region of the Antarctic Peninsula is related with warming in the vicinity of the Antarctic Peninsula for autumn and winter. Therefore it can be explained that recent warming in the vicinity of the Antarctic Peninsula is caused by positive feedback mechanism, that is, the process that warming in the vicinity of the Antarctic Peninsula can lead to the decrease of sea level pressure in the southeastern region of the Antarctic Peninsula and these pressure decrease in turn lead to the variation of wind direction in northwestern part of Weddell Sea, again the variation of wind direction enhances the warming in the Antarctic Peninsula.

Review of the Melting of West Antarctic Ice Shelves in the Amundsen Sea and Its Influence: Research Issues and Scientific Questions (아문젠해 서남극 빙붕 용융과 영향에 대한 고찰: 연구동향 및 과학적 질문)

  • Seung-Tae Yoon
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.155-172
    • /
    • 2023
  • The collapse of ice shelves is a process that can severely increase the rise of global sea-levels through the reduction of the buttressing effect of ice shelves and the consequent acceleration of the ice flow of ice sheets. In recent years, the West Antarctic ice shelves in the Amundsen Sea, whose buttressing effect is essential for a great part of the West Antarctic ice sheet, have been experiencing the most rapid melting and thinning in the world. The melting of the West Antarctic ice shelves is caused primarily by heat transported by Circumpolar Deep Water (CDW). For this reason, it is important to investigate ice-ocean interactions that could influence the melting of ice shelves and evaluate the stability of West Antarctic ice shelves. A lot of researchers have been actively investigating the West Antarctic ice shelves in the Amundsen Sea. High-impact journals have recognized the importance of and published studies on ice-ocean interactions occurring near and under the ice shelves as well as the connections among ice shelves. However, in situ observations are limited due to extreme weather and sea-ice conditions near the ice shelves; therefore, many scientific questions remain unanswered. This study introduces the characteristics of the Amundsen Sea and investigate the past and latest research issues in this region. This study also gives suggestions regarding important scientific questions and directions for future research that should help early-career scientists take the lead in future research on the melting dynamics of the West Antarctic ice shelves in the Amundsen Sea.

Sensitivity Study of Simulated Sea-Ice Concentration and Thickness Using a Global Sea-Ice Model (CICE) (전구 해빙모델(CICE)을 이용한 해빙 농도와 해빙 두께 민감도 비교)

  • Lee, Su-Bong;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.555-563
    • /
    • 2014
  • The impacts of dynamic and thermodynamic schemes used in the Community Ice CodE (CICE), the Los Alamos sea ice model, on sea ice concentration, extent and thickness over the Arctic and Antarctic regions are evaluated. Using the six dynamic and thermodynamic schemes such as sea ice strength scheme, conductivity scheme, albedo type, advection scheme, shortwave radiation method, and sea ice thickness distribution approximation, the sensitivity experiments are conducted. It is compared with a control experiment, which is based on the fixed atmospheric and oceanic forcing. For sea ice concentration and extent, it is found that there are remarkable differences between each sensitivity experiment and the control run over the Arctic and Antarctic especially in summer. In contrast, there are little seasonal variations between the experiments for sea ice thickness. In summer, the change of the albedo type has the biggest influence on the Arctic sea ice concentration, and the Antarctic sea ice concentration has a greater sensitivity to not only the albedo type but also advection scheme. The Arctic sea ice thickness is significantly affected by the albedo type and shortwave radiation method, while the Antarctic sea ice thickness is more sensitive to sea ice strength scheme and advection scheme.

A Comparative Analysis of Sea Ice Material Properties in the Amundsen Sea, Antarctica (남극 아문젠해에서 계측된 해빙의 재료특성 비교 분석)

  • Choi, Kyungsik;Kim, Hyun Soo;Ha, Jung Seok;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.254-258
    • /
    • 2014
  • Field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. To correctly estimate ice load and ice resistance on ship's hull, It is essential to understand the material properties of sea ice during ice field trials and to perform the proper experimental procedure by gathering sea ice data. A measurement of sea ice properties was conducted during February and March of 2012 with the Korean Icebreaking research vessel "ARAON" in the Amundsen Sea, Antarctica. This paper describes a test procedure to obtain sea ice data which provide basic information to estimate ice loads and icebreaking performance of the ship. The data gathered from sea ice field trials during the 2012 Antarctic voyage of the ARAON includes ice temperature/salinity/density and the compressive/flexural strength of sea ice. This paper analyses the gathered Antarctic sea ice material properties comparing with the previous data obtained during ARAON's Arctic and Antarctic voyages in 2010.

Distribution characteristics of Antarctic silverfish (Pleuragramma antarcticum) in the Ross Sea, Antarctica (남극 로스해에 서식하는 남극 은암치(Pleuragramma antarcticum)의 분포 특성)

  • Sara LEE;Wooseok OH;Hyoungsul LA;Wuju SON;Jeong-Hoon KIM;Kyounghoon, LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.117-124
    • /
    • 2023
  • This study used hydroacoustic method to identify the vertical and horizontal distribution of Antarctic silverfish in the Ross Sea, Antarctica. In February and December 2018, Antarctic silverfish was detected up to 250 meters, and was mainly distributed in water depths of 20 to 30 meters. The horizontal distribution of Antarctic silverfish was mostly undetected in February, and December showed a relatively stronger distribution than that of February. Antarctic silverfish is characterized by their distribution near sea ice.

Distribution and Vertical Structures of Water Masses around the Antarctic Continental Margin

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.277-288
    • /
    • 2005
  • Spatial distribution and vertical structures of water masses around the Antarctic continental margin are described using synthesized hydrographic data. Antarctic Surface Water (AASW) over the shelf regime is distinguished from underlying other water masses by the cut-off salinity, varying from approximately 34.35 to 34.45 around Antarctica. Shelf water, characterized by salinity greater than the cut-off salinity and potential temperature less than $-17^{\circ}C$, is observed on the Ross Sea, off George V Land, off Wilkes Land, the Amery Basin, and the Weddell Sea, but in some shelves AASW occupies the entire shelf. Lower Circumpolar Deep Water is present everywhere around the Antarctic oceanic regime and in some places it mixes with Shelf Water, producing Antarctic Slope Front Water (ASFW). ASFW, characterized by potential temperature less than about $0^{\circ}C$ and greater than $-17^{\circ}C$, and salinity greater than the cut-off salinity, is found everywhere around Antarctica except in the Bellingshausen-Amundsen sector. The presence of different water masses over the Antarctic shelves and shelf edges produces mainly three types of water mass stratifications: no significant meridional property gradient in the Bellingshausen and Amundsen Seas, single property gradient where ASFW presents, and a V-shaped front where Shelf Water exists.

Climatological Trend of Sea Water Temperature around the Antarctic Peninsula Waters in the Southern Ocean

  • Lee, Chung-Il;Kim, Sang-Woo;Kim, Dong-Sun;Yoon, Moon-Geun
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Climatological trend for the period of 1970 to 2009 in sea water temperature around the Antarctic Peninsular waters in the Southern Ocean was investigated. During the period from 1970 to 2009, sea water temperature in the top 500 m water column except 100 m increased at a rate of $0.003-0.011^{\circ}C{\cdot}yr^{-1}$, but at 100 m it decreased at a rate of $-0.003^{\circ}C{\cdot}yr^{-1}$. Although long-term trend is generally warming, there were several periods of sharp changes between 1970 and 2009. Annual mean sea water temperature between surface and 500 m except 100 m decreased from the early of 1970s to the end of 1980s, and then it increased to the end of 2000s. In the entire water column between the surface and 500 m, sea water temperature closely correlated with the El Nino events expressed as the Southern Oscillation Index(SOI), and SOI and sea water temperature have a dominant period of about 3-5 years and decade.

Antarctic Marine Microorganisms and Climate Change: Impacts and Feedbacks

  • Marchant Harvey J.;Davidson Andrew T.;Wright Simon W.
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.401-410
    • /
    • 2001
  • Global climate change will alter many such properties of the Southern Ocean as temperature, circulation, stratification, and sea-ice extent. Such changes are likely to influence the species composition and activity of Antarctic marine microorganisms (protists and bacteria) which playa major role in deter-mining the concentration of atmospheric $CO_2$ and producing precursors of cloud condensation nuclei. Direct impacts of climate change on Antarctic marine microorganisms have been determined for very few species. Increasing water temperature would be expected to result in a southward spread of pelagic cyanobacteria, coccolithophorids and others. Growth rates of many species would be expected to increase slightly but nutrient limitation, especially micronutrients, is likely to result in a negligible increase in biomass. The extent of habitats would be reduced for those organisms presently living close to the upper limit of their thermal tolerance. Increased UVB irradiance is likely to favour the growth of those organisms tolerant of UVB and may change the trophic structure of marine communities. Indirect effects, especially those as a consequence of a diminution of the amount of sea-ice and increased upper ocean stratification, are predicted to lead to a change in species composition and impacts on both trophodynamics and vertical carbon flux.

  • PDF

Effects of Environmental Changes on Stock of Krill and Salp in the Atlantic and Indian Sectors of the Antarctic

  • Lee, Chung-Il;Pakhomov, E.A.;Atkinson, Angus;Siegel, Volker
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.215-219
    • /
    • 2007
  • Long-tenn variation in krill (Euphausia superba) and salp (mainly Salpa thompsoni) stocks was compared to environmental changes in the Atlantic and Indian sectors of the Antarctic. Environmental conditions examined were air temperature, water temperature, salinity, and sea-ice extent from 1926 to 1938 and from 1982 to 2000. The long-term pattern of krill was opposite to that of salp: krill stock decreased while salp stock increased concurrently. Krill stock was about three-fold higher from 1926 to 1938 than from 1982 to 2000, but salp was about four -fold lower in 1926-1938 than in 1982-2000. A wanning trend was observed in the environmental data, and the long-term variation in krill and salp stocks was affected by this trend.

Diversity of Culturable Bacteria Associated with Hard Coral from the Antarctic Ross Sea

  • Kim, Min Ju;Park, Ha Ju;Youn, Ui Joung;Yim, Joung Han;Han, Se Jong
    • Journal of Marine Life Science
    • /
    • v.4 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • The bacterial diversity of an Antarctic hard coral, Errina fissurata, was examined by isolating bacterial colonies from crushed coral tissue and by sequencing their 16S rRNA gene. From the analyzed results, the bacteria were classified as Actinobacteria (56%), Firmicutes (35%) and Proteobacteria (9%). The thirty-four isolates were cultured in liquid media at different temperatures and their growth was assessed over time. The majority of the isolates displayed their highest growth rate at 25℃ during the first three days of cultivation, even though the coral was from a cold environment. Nevertheless, strains showing their highest growth rate at low temperatures (15℃ and 4℃) were also found. This study reports the composition of an Antarctic hard coral-associated culturable bacterial community and their growth behavior at different temperatures.