• Title/Summary/Keyword: Antarctic oscillation index

Search Result 3, Processing Time 0.02 seconds

The Study on Occurrence of Asian Dust and Their Controlling Factors in Korea (한국의 황사 출현에 영향을 미치는 요인에 관한 연구)

  • Kim, Sun-Young;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.6
    • /
    • pp.675-690
    • /
    • 2009
  • This paper aims to analyze number of Asian dust days and their controlling factors in Korea. Asian dust days, Arctic oscillation index, Antarctic oscillation index and Eurasian snow cover data were used in this study. The number of Asian dust days was increasing after the middle 1980s. The number of Asian dust days was concentrated in April. The number of Asian dust days was increased second half (5.1 days) than first half (3.2 days) of the study period. The number of Asian dust days had positive relationship with winter Arctic oscillation index and Antarctic oscillation index. When the Arctic oscillation index and Antarctic oscillation index is positive, the Asian dust days will be increased. The number of Asian dust days had negative relationship with the Eurasian snow cover. When the Eurasian snow cover will be decreased, the Asian dust days will be increased.

Association between Solar Variability and Teleconnection Index

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • In this study, we investigate the associations between the solar variability and teleconnection indices, which influence atmospheric circulation and subsequently, the spatial distribution of the global pressure system. A study of the link between the Sun and a large-scale mode of climate variability, which may indirectly affect the Earth's climate and weather, is crucial because the feedbacks of solar variability to an autogenic or internal process should be considered with due care. We have calculated the normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North-South asymmetry with teleconnection indices. We have found that the Southern Oscillation Index (SOI) index is anti-correlated with both solar activity and the solar North-South asymmetry, with a ~3-year lag. This finding not only agrees with the fact that El $Ni{\tilde{n}}o$ episodes are likely to occur around the solar maximum, but also explains why tropical cyclones occurring in the solar maximum periods and in El $Ni{\tilde{n}}o$ periods appear similar. Conversely, other teleconnection indices, such as the Arctic Oscillation (AO) index, the Antarctic Oscillation (AAO) index, and the Pacific-North American (PNA) index, are weakly or only slightly correlated with solar activity, which emphasizes that response of terrestrial climate and weather to solar variability are local in space. It is also found that correlations between teleconnection indices and solar activity are as good as correlations resulting from the teleconnection indices themselves.

Climatological Trend of Sea Water Temperature around the Antarctic Peninsula Waters in the Southern Ocean

  • Lee, Chung-Il;Kim, Sang-Woo;Kim, Dong-Sun;Yoon, Moon-Geun
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Climatological trend for the period of 1970 to 2009 in sea water temperature around the Antarctic Peninsular waters in the Southern Ocean was investigated. During the period from 1970 to 2009, sea water temperature in the top 500 m water column except 100 m increased at a rate of $0.003-0.011^{\circ}C{\cdot}yr^{-1}$, but at 100 m it decreased at a rate of $-0.003^{\circ}C{\cdot}yr^{-1}$. Although long-term trend is generally warming, there were several periods of sharp changes between 1970 and 2009. Annual mean sea water temperature between surface and 500 m except 100 m decreased from the early of 1970s to the end of 1980s, and then it increased to the end of 2000s. In the entire water column between the surface and 500 m, sea water temperature closely correlated with the El Nino events expressed as the Southern Oscillation Index(SOI), and SOI and sea water temperature have a dominant period of about 3-5 years and decade.